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ErrirTic FUNCTIONS *

Carl Gustav Jacob Jacobi

PROOEMIUM

Almost two years ago, when it was customary to examine the theory of elliptic
functions in greater detail, I stumbled upon certain most important questions
which seemed both to create a new branch of this theory and promote the
art of analysis significantly. Having given a satisfactory and because of the
inherent difficulty hardly expected answer to those questions, I communicated
the first major results, at first in short form and without a proof, then, because
soon afterwards the proof seemed to be desired even more and, after new
discoveries, those results seemed to be seen suspiciously, with a proof with
the geometers. At the same time, I was urged to publish the complete list of
question I studied. To satisfy this desire at least partly I decided to publish
the foundations on which my investigations are based. Now, we commend
these new foundations of the theory of elliptic functions to the indulgence of
the geometers.
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1 ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS

1.1 EXPOSITION OF THE GENERAL PROBLEM ON THE
TRANSFORMATION

1.

The most memorable integrals which are exhibited by the formula [ \/ﬁm
and which constitute the first kind of elliptic functions, as they are called
nowadays, depend on two arguments, on the amplitude ¢ and the modulus k.
Having compared the values of functions of this kind they take on while the
modulus stays fixed, the Analysists had discovered many extraordinary re-
sults concerning their addition and multiplication. We, with great admiration,
have recently seen that this theory was promoted significantly by Abel in his
treatise (Crelle Journal fiir reine und angewandte Mathematik Vol. II).

Another question of not minor importance - understood in the broadest sense
it even contains the first - is the question on the comparison of the elliptic
functions for different moduli. After the beautiful discoveries of Legendre
- the founder of the theory of elliptic functions - we, at first, reduced this
question to certain principles and gave their general solution (Astronomische
Nachrichten, 1827, n°123,127). And we now want to explain this theory on
the transformation and all the results following from this for the analysis of



elliptic functions in great detail.

2.

The general problem we want to tackle is the following:

"To find a rational function y of the variable x of such a kind that we have

dy dx ;
VA + By +Cy2+ D'y + Ey* VA + Bx+Ca2 + Dad + Ext

We see that this problem contains both the multiplication and the transforma-
tion.

Examples of rational functions y of such a kind solving the given problem
have been known for a long time. At first, it was known, no matter which odd
number 1 was given, that one can exhibit a rational function y of such a kind
that we have:

dy B ndx .
VA+By+Cy2 + D3+ Eyt VA4 Bx+Cx?+Dx3 + Ext’

this is the theorem on multiplication. For this aim, one has to assume this
form:

a+a'x _|_a//x2 +a”’x3 4ot a(nn)xnn
y= babx+b'"x2+b"x3 4+ ...+ p(nn) ynn’
after having determined the coefficients a,a’,a”,--- ,;b,b',b", - - in the right
manner. Additionally, it has also been known for a long time that this form

a+a'x+a"x?
YT b b+ b2
or this more general:

a+t adx+a'x2 a3 ... +a(2’”)x2’”

b LW x4bx2 b3 L p@m) 2
which results from the preceding by iterated substitution, can be determined
in such a way that it solves the problem. Recently, it was even proved by




Legendre that for this aim this form, determined in the correct way, of course,
can be used:

Catax+a’xX2+a"x3 4 +al")
T b U+ R+ 0 -+ DO
Combining these two forms it is plain that the problem can be solved by an
appropriate choice for the coefficients and by putting:

a+a'x+a"x*+a"x - alP)xp

y= b+b’x+b”x2+b”’x3+-"+b(p)xp,

if p is a number of the form 2%3f(2m + 1)2. Now, it will be proved in the
following that the same holds, no matter what number p is.

1.2 THE PRINCIPLES OF THE TRANSFORMATION
3.

Let us denote two polynomial functions of the variable x by U, V, further, let
y= %, it is:
dy _vdu—-uadv
\/A’ + By + C’yz ¥ D’y3 i E’y4 ﬁ !
having for the sake of brevity put:

Y = A'V* 4+ B'V3U + C'V?U? + D'VU® + E'U*.

vau-udv

The fraction can be transformed into a simpler form, if Y contains

multiple factors; when except for four mutually different linear factors two of

the remaining ones are equal, the fraction, by itself, reduces to the differential
T . dx .

of an elliptic function MVATE T Ca Do where M denotes a function of

the variable x. Let us examine this case in more detail and see, how many

and which conditions it demands.

Let U, V be functions, the one of p-th order, the other of m-th order such that
m < p; Y will be of degree 4p. Now, that, having excluded the case of four
linear factors, of the remaining factors of the function Y, whose number is
4p — 4, two become equal to each other, 2p — 2 conditions are to be satisfied.
For, so many conditional equations between its coefficients must hold as many
double linear factors the given function must have.



But the functions U,V contain m + p + 2 or rather m + p 4 1, because one of
them can be set = 1, undetermined constant quantities. Therefore, their total
amount either becomes equal to the number of 2p — 2 conditions or the number
of conditions is smaller than the number of undetermined quantities; let us
suppose that m is any of the numbers p — 3, p —2, p — 1, p in which cases
the number of unknowns becomes 2p — 2, 2p — 1, 2p, 2p + 1, respectively.
It will be shown below that the first two cases are to be neglected and
this is already plain by the following argument. For, having found the
functions U,V providing the function Y with the prescribed form, if one puts
« + Bx instead of x, neither the structure of the functions U, V,Y nor the
number of double factors of the function Y is changed: Hence it is possible to
introduce two arbitrary quantities from the beginning. Therefore, the number
of undetermined quantities has to exceed the number of conditions by at least
two, whence the cases m = p — 3 and m = p — 2 are to be neglected. Further,
having put ﬁfi for x we see that the third case can be reduced the fourth
and the fourth is not changed by any means, in which case therefore three of
the unknowns remain arbitrary and have to stay arbitrary.

Now, it is therefore shown, what can be concluded from the comparison of the
number of undetermined quantities to the number of conditions: No matter
what the number p is, the form:

_atdx+ad"P4+ad"3+ -+ aP)xp
T +bx+ b2+ 0"x3 4+ bPxp
can be determined in such a way that we have:

dy dx
VA +By+Cy>+ D'+ Ey*  MvVA+ Bx + Cx2+ Dx3 + Ex*’

where M denotes a rational function of x: the solution can involve up to three arbitrary
constants.

4.

In order to determine the function M, let

Y = (A + Bx + Cx* + Dx® + Ex*)TT,

where T denotes a polynomial function of the variable x: It will be



B T
— du av -
Vi — Uy
T will be of order 2p — 2 and V‘zl—LxI - U‘% cannot be of higher order. Now, it
is known in certain cases, of course, whenever the number p has the form

2%3f(2n 4 1)?, that M becomes even constant. The same will be proved in the
following, for every number p.

We can assume that the functions U, V do not have a common factor; for,
having assumed a common factor, the fraction ¥ = v is not changed. Let us
resolve the expression

A/+B/y+c/y2+D/y3+E/y4

into linear factors such that we have:

A'+By+Cy¥+DyV+Ey* =A(1—-a'y)(1-By)1—+y)(1-5y),

whence it is:

Y = AV B'VIU+C'VPU?+ D'V +E'U* = A'(V —a'U)(V - B'U)(V —7/U)(V - &U).

Now, there cannot exist a factor which is a common factor of all the quantities
V—a'U, V—-pBU V—-9U V—-4U or even only two of them; for, this
factor would divide V and U at the same time, which we assumed to have no
common factor. Therefore, if any linear factor divides the function Y twice, the
same has to divide one of the quantities V —a'U, V — /U, V — U, V —'U
twice.

Now, let us consider the following equations:

:
(V—a’u)cgj —V;)‘C"/Uu :V”Clllj—u?;
(V—/s/u)‘% —%u:vfg—ufl‘;
(V- /u)”;u— Y d;uuzvﬁ—ug



from which it follows that a factor dividing any of the quantities V — a’U,
V —pB'U, V—+'U,V —§U and hence also its differential twice also divides
the expression V% — LI%. But, we put the product conflated of all these
factors, also dividing Y twice, = T, whence T will divide V% — U‘%. But T
is not of lower order than V%c[ — U%, whence we see that

_ T

- du av

Ve —Uge

becomes a constant.
Additionally, we want to mention, if the one of the functions U, V would have
been of lower order than p — 1, that then also V% — U‘% would have been of
lower order than T, which nevertheless has to divide the latter; since this is
absurd, the cases m = p —2, m = p — 3 must be neglected.

Therefore, it is now proved that the form
Ca+ax+a’x?+ o +alP)xp

S N A T
for any number p, can be determined in such a way that the following identity results:

dy dx
VA +By+Cy2+ D'y + Ey* A+ Bx+Cx2+ Dx® + Ex?’

This is the fundamental principle in the theory of transformations of elliptic functions.

1.3 IT IS PROPOUNDED TO REDUCE THE EXPRESSION

dy dx
VI 0T A G O THESIMPLER FORM 4 ey

5.

By means of three arbitrary constants we saw our solution to admit that the
expression A + Bx + Cx? + Dx® + Ex* can be transformed into this simpler
one: A(1— x?)(1 — k?x?). To illustrate this and the remaining things which
were demonstrated by an example let the expression given in the title be
propounded:

dy
VEG-a)y—B)y—7)y—9)




which after the substitution

a+a'x+a"x?
T b+ bx+ b
is to be transformed into this simpler one

dx
My/(1—x2)(1 — K2x2)
The question is about the determination of the substitution to be made and
about the modulus k and the constant factor M from the given quantities «, B,
v, 0.
Letus puta—+a'x+a"x> = U, b+ b'x+b'x> = V,y = ¥; from the principles
just explained it has to be:

(U—aV)(U—-BV)(U—-+V)(U—-6V) =K(1—x*)(1—Kkx*)(14+mx)*(1+nx)?,

where K denotes an arbitrary constant. Therefore, we see that two of the
total amount of factors V —a’U, V — B'U, V — o'U, V — § U, which will be of
second order, even become squares. Therefore, let us put:

U—+V =C(1+ mx)?
U—6V =D(1+nx)>

Concerning the remaining functions U — aV, U — BV, one can either put:

U—aV =A(1—-2x%), U — BV = B(1 — K*x?)
or:
U—aV=A1-x)(1—kx), U—-PBV =B(1+x)(1+kx),

where A, B,C, D denote constant quantities. The first possibility would have
to be neglected. For, it will yield g ““f = Z 3= A 11_kl », whence having
transformed x into —x it would follow that y rem ams unchanged; that this is

absurd is obvious from the equations:



U—aV y—a A 1-—x?
U—q9V y—v C (1+4mx)?
U-aV y—a A 1-—x?
U—06V y—6 D (1+nx)?

Therefore, one has to put:

(1) U—aV =A(1-x)(1—kx)
(2)  U—-BV =A1+x)(1+kx)
(3)  U—9V=C(l+mx)?
(4)  U—6V =D(1+nx)>

It should be mentioned that one of the constants A, B, C, D can be determined
arbitrarily.
6.

From equation (1), having put x = 1 and x = {, we see that U = aV. Hence
from the equation:

U—9V C  (1+mx)?
U—-BV B (1+x)(1+kx)

after having put x = 1, it results:

and for x = %:

whence it is

(1+m)2:k<1+m)2.

Further, one will find in like manner:

10



(1+n)2:k<1+ﬁ)2,

k
whence m = ﬁ, n=—vk. Therefore, it is not possible to assume m and n
to be equal; since then the expression L&:% = % and hence y would be a
constant.

Now, in the equation
2
U=V _y-7 _C [1+Vkx
u-sv y—-6 D 1—vVk-x

let us at first put x = 1 in which case U = aV, and then x = —1 in which case
U = BV. The following two equations result:

«y_C f1evE)
1- vk

x—06 D
p—v_C [1-vk)|®
p—o D \1+vk[

After having multiplied those equations by each other we have:

whence it is possible to put:

C = \/(vc—v)(l%—v)
D=/(a—0)(B—9);
for, one of the quantities A, B, C, D could be determined arbitrarily.

From the same equations, having divided one by the other, we will obtain:

1+vEk_ Y@ 2(E-9)
1—vk V@ oB- 1

11



whence it follows:

Vi Va9 - Ya—9E-—7
a1 (B-0)+/@—8)B-7)

Finally, let us note the formula:

Vis Ly VamE=0+ 5B
AR/ P (e By T -y

whence we obtain:

(1oL —4/(@=0)(B—9)

(1 k)<1 \/E) V= (B—-0) -+ (@a=38)(B—17)
1) _ 4/l —0)(B—0)

<1+‘/I;)<1+\/E) Ve=1)B=0—V«=0)(B—7)

In order to determine the constants A, B observe that from the equations

(1),(2),(3), after having put x = ﬁ which in turn leads to U = 4§V, it is

found:

whence it follows:

A _ (oc—yv_)ga—ﬁ {\/(“_7)(‘3_5)—\/(zx—(5)(ﬁ—’)’)}

p— HEEDE=I ] o )6-0) - Ja-a)6- .

12



7.

From the general principle we established above it follows that in our example
the expression V4 — U4Y will be equal to the product (14 vk-x)(1 — vk x)
multiplied by a constant, which claim is proved by direct calculation.

It, as it is plain from the expansion, is:

(v —9) (UZZ — Vf;j) = (U—’yV)d(ud_xéV) - (u_(sv)d(ud_x'yv).

But we obtained:

U—vV=C(1+Vk-x)?
U—06V =D(1-Vk-x)?,

whence it follows:

W: 2C(1+ Vk- x)Vk

d(ud;‘sv) = —2D(1 - Vk-x)Vk.

Hence it results:

(y—6) <v”§j-u?§> =4Vk-CD(1+ Vk-x)(1 - Vk-x).

Having gathered all these in the right way we obtain:

dy _ 4k | CD dx
V-y—)y-ply—7y—-¢6 r=0 V-AB J1-x2)(1-kx?)

whence it follows:

7

Mo =9 [=AB _ {a=7)(B-0)—(a-3) (-7
4vk V CD 4k

_ {wa—v)(ﬁ—cs)—wa—w—v)}z
. ,

13



dy _ dx
V--a)y-By—-71y—-90) MJ/A—-x2)(1-kx?)
dx

J -] [( Y9+ @B > t ( Y- Y@ B ) ! xz]
2 2
Having put (« —)(8 —6) = G, (a — J)(B — ) = G’ this becomes:

dx dx

M- 22)(1— 02) \/[1 e {(4@2%)4 _ (%wﬂ'

Let G = mm, G’ = nn, further let:

m’:%(m +n), n' =+mn
m'’ = %( "+1), 0" =vVm'n';
having put x = sin ¢ it will be:
dx de

M\/(l — x2)(1 — kzxz) \/m//m// C052 ¢ + n''n' sin2 §9

Additionally, the value of x is easily calculated by means of the formula:
1-vVk-x _ Jla—1B-7) [y-9
1+ Vk-x (@=0)(B—0) Vy=7

_ \4/5_ \4/@ 4 m"m" — n''n’
- \4@4— \4/@ - m'"m" :

8.

where:

vk

The quantities «, B,7,d can be interchanged arbitrarily in the propounded
formulas. This certainly is to our advantage and, whenever a condition is

14



added, if it is possible, of course, the transformation succeeds by means of a
real substitution. Let us examine this in more detail.

Let us put that the quantities «, B, y, ¢ are all real, further leta > > ¢ > §
such that « — 8,& — 7,& — J are real positive quantities. Now, one has to
distinguish the boundaries within which the value of y is contained:

1) 6 and 9, 2) vy and B, 3) B and «, 4) a and ¢.

In the last case, imagine that the transition from « to 6 happens through
infinity. We see that the expression

dy
Vy—a)y—-B)y—7)y—9)

becomes real only in the second and fourth case, whereas the expression

dy
V= —a)ly=B)y -7y —9)
becomes real only in the first and the third case. Table I indicates real
substitutions corresponding to the four cases. The second table II contains the
formulas providing the transformation of

dy
VEY-a)y-p)y-7)
into a simpler form by means of a substitution for the boundaries within
which the value of the argument y is contained:

1) —oo and 79, 2) vy and B, 3) B and a, 4) a and + 0.

These formulas, by diving by —J under the square root sign and putting
J = oo, can easily be derived from table I.

15



(IL.)

Table 1.

dy _ dx
V- —-By—1y—9) (1 —x)(L*— N2
P ] ) e € ) BN ) B 1 )

2 2
e dheen.. g  LNx L J(@=PB)(B=0)  [y—7
Limits: «--- % 5'L—|—Nx_\/(tx—’y)(’y—5) y—p
- L=Nx _ J(B=0)(y=9) [|a—y
Limits: a---------- 5'L—|—Nx_\/(zx—[3)(0c—’y). y—o
dy dax

-0y -B-Muy—-0 VI-0(*— N2
L V@B @B Y )E=8) ~ o)1)

2 2
L—Nx _,J(a—7)(B—7) [y—¢
bt e L+Nx_¢(tx—5)(/3—5)'\/y—7
L—Nx _,J(a=7)(a=0) [B—y
Limits: 0 T T+ Nx \/(ﬁ—v)(ﬁ—fF)'\/w—y'
Table II.
dy B dx

Vi—0y—B -7 V(1 -x)(L* - N4a?)
L_W+W N Va7 - JT

L—Nx x—p
1. imits: .
(L) Limits: « T Nx 1/0‘_ 1/

L—Nx
L+Nx (w—ﬁ)(w—v)

(I)  Limits: EB:

16



dy _ dx
V--)y-Bly—7) V(I —-x)(L— N
R B RN e B

> ,

L—Nx _ /(a— )(ﬁ 7)

1. Li t [ s I :
(L) imits: B N T
L—Nx _
II. Limits: —oo---:
(IL.) imits 0 YTy \/ -

In these formulas for the given boundaries as x goes over from —1 to 1 at
the same time y goes over from the one boundary to the other. But having
commuted the boundaries corresponding to the formulas (I.) and (II.) we see

that the expression E-N* creates an imaginary value of the form +iR, where
P L+Nx g Yy

we put i = /—1 and assume R to denote a real quantity; additionally, we see

Lel?

that x takes on the form =~ whence it follows

\/7/

L-Nx 1—¢¢ e % _¢% . ¢
= — = _ — = —71tan —.
L+Nx 1+e? e % +e7 2
Let us substitute the form we were led to in this occasion, x = \[, in the
: dx : .
expression N Hence it results:
dx B ie'?d B de
(1 — k2x2) : - — 0 — i
VI - 0) ﬁ,ﬂl_ez]j) (1w VO KNk )
dg _ dg

/1 —2kcos2¢ + kk \/(1 —k)2cos? ¢ + (1 + k)2 sin® go.

This substitution is certainly remarkable. For, by putting x = siny from it this
even more general formula follows:

k"sin® pdip  (cos2ng + isin2ne)dg

/1—kzsin21/) N V/1+2kcos2¢ + kk ’

whence, since the imaginary part vanishes, for the boundaries 0 and 7 one
obtains:

17



/ k" sin®™ ypdy / cos2npde _ / cos nede
/1 k251n , \/1—2kC052<p+kk , \/1—2kcosq)+kk’

which is a short proof for the remarkable formula given by Legendre. From the
tables I. and II. it it possible to derive two others after having commuted the
boundaries within which the valor of y is contained and having put x = LLI\'](”
For the assigned boundaries the angle ¢ grows from 0 to 77, whereas y goes

over from the one boundary to the other.
Table III.

(A) il = il
V—a)y =By -7 —9) \/mmcoszgo—i—nnsinz(p

m={(a—1)B-8)(a—p)r—05), n=

Va=7)(B=7)+(@a=B)(y—9)
2

.......... and — 4 (“_,B)(,B_‘S). y—7r
(I.) Limits: B: t > \/((x—fy)(ry—(s) =
imits: a---+o0---8: anE:‘* (5_5)(7—5)_ y—
(IL) Limits: + o: t > \/(Dé—,B)(zx—'y) s
(B.) dy _ dg
V--)y-Bly—7y -9 \/mmcoszq,_i_nnsngo
= {fe—B-aa-oF—r), n-YLEDE-Iyle)
TP Coan @ =@ NB=)  y=0
(1) Limits: ¢ yiot 5 \/(04—5)([5—(5) \/ly—y
imits: Bece-e--- a: tan? = ¢ (a—vy)(@—=0) Jy—p
(IL)  Limits: B © tan g \/(ﬁ—v)(ﬁ—é) \/a_y.

18



Table I'V.

(A) i = 29
VI —a)y—B)y—7) \/mmcosz(/)+nnsin2(p

m= - ma—p), n=Y2IEVEZP

g . ¢ _ .ja—Pp y—7
(L) Limits: ----- B: tanE_ Moc—fy' /,B—y
— vy —&

(IL)  Limits: a---+oo: tane =

2 Ya-pla—9)

(B.) i — a9
V=—a)y—B)y—7) \/mmcosch—l—nnsinzq)

_VE VB
2
9  (a—7)(B-17)

IR Limits: —oo---9: tan—< =
o 2 7Y

. ¢ x—y y—B
II. Limits: B------- a: tanLt =} —-- .
(IL.) B > Uﬁ_7 “y

We treated this question in more detail to have a fully worked out example.
The cases where either two or four of the quantities «, B,y,J are imaginary
still remain. The first case also admits a real solution which does not contain
imaginary quantities at all. The second case does not allow such a solution at
all. Therefore, to reduce everything to real numbers a new transformation will
be necessary, whence the desired beauty of the formulas gets lost. Therefore,
we will not address this question.

m={@-1-7), n

To the propounded substitution corresponds another formula, inverse to it, of
the form

. a+a/y+a//y2
- b—l—b’y—|—b”y2’
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which yields most elegant formulas itself. But, that it does not seem that we
might stay at this question too long, we want to postpone the investigation to
another occasion. We return to general questions.

1.4 ON THE TRANSFORMATION OF THE EXPRESSION dy
L VOi-A)
X

INTO ANOTHER SIMILAR ONE
My/(1—-x2)(1-k2x2)

10.

We saw that the given expression

dy
\/A’ + B’y + C']/2 + D’y3 + E/y4

by means of a transformation of this kind:

B a+ax+a’x®+ - +alPyp u

y_b+b/x+b//x2+...+b(l7)xp _V,

no matter what number p is, can be transformed into another one similar to it:

dx
VA+Bx+Cx2+ Dx3+ Ex*

A substitution of such a kind depends on the coefficients A’, B’,C’, D’, E’ and
crucially on the number p which denotes the exponent of the highest order
found in the rational functions U, V. Therefore, in the following we will say
that a substitution or transformation is of p—th order belongs to the p — th order
or, simpler, corresponds to the number p.

Now, intending to examine the nature of this substitution in more detail, let
us put that more complex form aside:

dy
\/A/ + By + C’yz ¥ D/ys ¥ D/y4’

and let us discuss, how to transform this simpler form S S—
(1-y?)(1-A%y?)
which - as we saw and as it is known - the latter can be reduced, into another

similar one dx .
M

(1—x2)(1—k2x2)

Having examined the nature of the propounded equation carefully it is found
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that the problem is solved if one of the functions U, V is odd and the other
even; this is already indicated by the examples explored by the analysts up
to now. For this task, one has distinguish the case in which the order of the
odd function is smaller and the case in which the order of the even function is
smaller, and the case in which the transformation belongs to an even number
and the case in which the transformation is of odd order.

Now, let us therefore at first prove that the transformation succeeds, if a

transformation of even order or of the following form is used:

x(a+a/x2+a//x4 _|_a(m—1)x2m—2) u

a4+ b'x2 + b x4 + plm) x2m Ve
Here, the functions V+ U,V — U,V + AU,V — AU will all be of even order,
whence we want to put:

(1.) V+U =(1+x)(1+kx)AA
(2)  V-U =(1-x)(1—kx)BB
3) V+AU=CC

(4) V+AU=DD,

where A, B, C, D denote polynomial functions of the variable x. Those equa-
tions will be satisfied at the same time; for, it, as we proved, one will find:

dy B dx

VI M- k)
Since, having changed x into —x, U becomes —U, but V is not changed,
from the equations (1.), (3.) the equations (2.), (4.) follow immediately. To
satisfy equations (1.),(3.), V + AU must have two equal linear factors m
times but V + U must have two equal linear factors m — 1 times; in ad-
dition, V + U must contain the factor 1 + x. All this in total leads to
m+m —14+1 = 2m conditional equations which is the number of un-
knowns a,d’,--- ,a™=1.p/ b ...pM  Hence the propounded problem is
well-defined.

Secondly, we want to prove that the transformation also succeeds having used
a substitution of this kind:
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x(a+a'x?+a"xt +aMx®m)y U

a+bx2+b'xt + pmx2m TV
which belongs to an odd number. Here, V 4+ U,V — U,V + AU,V — AU are
all of odd order, whence we want to put:

(1) V4+U =(1+x)AA
(2.) = (1-x)BB
(3) V+AU= (1+kx)CC
(4) V—AU= (1-kx)DD.

Additionally, here only equations (1.), (3.) have to be satisfied, from which
by changing x into —x the remaining two follow directly. To satisfy those
equations, it is necessary that both V + U and V + AU have two equal linear
factors m-times, for which aim 2m conditional equations will have to be
satisfied; additionally, U + V needs to contain the factor 1 + x. Hence we
see that the number of conditional equations is 2m 4 1 which is the number
of unknowns a,a’,a”,--- ,a"™;v’,b",- - ,b"™). Therefore, the problem is also
well-defined in this case.

11.

Let us denote polynormal functions of the variable y of such a kind by U’, V'
that, having put z = V/, it is:

dz dy

V=202 -0 2R)
Let the substitution that was done, z = Vf, be of p’—th order and by means of

another substitution y = % (where U,V as above denote polynomial functions
of the variable x) which We assume to be of order p, let us as above find:

dy _ dx
VA=) -2%2) My/(1-22)(1-ka?)

Now, having substituted the value y = Y in the expression z =

"
U letz = U7

be the result: Hence the one substitution z = % by means of which it is
found:
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dz B dx
VA=2)(1-p222)  MM'\/(1-2)(1-kx?)

will be of order pp’. So, we see that from several successively used trans-
formations belonging to the numbers p, p’, p”, - - - one can compose another
one belonging to the number pp'p” - - -. And, vice versa it is always possible
- what we will not prove here - to compose a transformation which has the
composite order pp'p” - - - from other successively applied ones which have
order p,p’, p” - - -, respectively. Therefore, it is only necessary to investigate
those transformations that belong to the first number from which all the others
can be constructed. Now, in the following let us therefore put the first case
aside which concerns the even order of transformation which can always
be constructed from a transformation of odd order and a sufficiently often
iterated transformation belonging to order 2. But let us examine the second

case or the transformation of odd order in more detail now.

12.

We see that in this case we have to determine two functions, the one, V, of
even order 2m, the other, U, of odd order 2m + 1, in such a way that these
equations hold:

V+U=(14+x)AA, V+AU = (1+kx)CC.

Now, I claim, if the functions U, V were determined in such a way that, having put
& for x, y = Y becomes Aiy = %, that then those equations follow from each other
immediately.

Let us put V = ¢(x2), U = xF(x?); we see that the expression y = PO

having put 2 for x, goes over into

F(ge) _ *"F(ga)
kxp (Fa) k-39 (o)’
where x>"F (ﬁ) and x*"¢@ (ﬁ) are polynomial functions. To render this
1 _ v o_ o)

equal to the expression priib v the following equations must hold

AxF(x2)’

go(xz) = pr F <k2x2> , AP(xz) = pkx2 7 <k2x2) ,
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where p denotes a constant quantity. If we put = for x in these equation, we
. k .
obtain: ¢ (ﬁ) = oz F(x?) and AF < k2x2> v ¢(x?). Comparing these

to the first equations we get 1(27 = pk’ whence p = VAk?"~1. Therefore, it
follows:

k2m+1 1
@(x?) = V AK2m—1x*"F <k2 2> F(x?) = 5 XM <k2x2>

The one of these equations follows from the other.

Now, as often as the expression

V+U  @(x?) +xF(x?)

T+x 1+x
is a square of a polynomial function of the variable x, the same will also hold
for the other equation which is derived from the first by putting ;= for x and

multiplying by v Ak?"~1x?". Having done this we obtain, if ‘{iff is a square,
that the function:

e (E2) H &F () _ VARTIE (ga) + VAR g ()

1+ & 1+ kx
_e(x®) +AxF(x*)  V+AU
1+ kx 1+ kx

will itself be a square. Q.D.E.

Therefore, the problem was reduced to the other problem that the expression

o(x?) + /T e () v

14+ x 14+ x

is made a square where ¢(x?) denotes an expression of this kind:

QD(XZ) — V=14V +b"x*+--. +b(m)x2m
But having put U = xF(x?) = x(a +a'x*> +a"x* + - - - + a™x?"), because it

is U = xF(x?) = 4/ kz";rl x¥m g (ﬁ), we have:
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Now we will come to some examples.

1.5 A TRANSFORMATION OF THIRD ORDER IS PROPOUNDED
13.

Let m = 1 which is the simplest case, further let V. =1+ b'x%, U = x(a + a'x?).
Having put A = 1 + ax we find:

AA = (1+ax)? =1+ 2ax + aax?,

whence:

V+U=(14+x)AA=1+ (142x)x +a(2+a)x* + aax’.

Hence it is:

V=a(2+a), a=(1+2a), da=ana

The equations (*) in § 12 become the following:

a_\/?b’ g e
VA k7 VA
whence we obtain:

a(2 + a) [ k3 4/ K3
14+20=——FF"F"2%, an=14/—, a=1/—.
VKA A A

Put vk = u, VA = v, it will be & = £, 1+ 20 = 252 (2 4 o) = LED)
Therefore, the equation:

a2+ )

1420 =
VEA

goes over into the following;:
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or

(1.) ut — vt + 2uv(1 — u?v?) = 0.
Additionally, it is

3
a =1420= v+ 2u
v
/ ué
@ =an=
3 2 3
V=a2+a) = u(z;z—ku) = vu®(v + 2u®).
From this we obtain:
2) (v +2u3)ox + ubx®
' y= 02 + v3u2 (v + 2ud)x2’
Furthermore, because itis 1 +y = w, we obtain:
(14 2)((v+u’x)?
3 1 =
(3) Y v? + v3u? (v + 2ud)x?
o (A =x)(v— udx)?
Yy =y v3u? (v + 2u3)x2

1—y_F v —ux
1+y 14+x v+udx
1_x2 2 62)
vz+v3u2 (v+2ud)x?

—~
(o)}
~

3
N

Further, by putting & = u}—x for x, since y becomes %y = v}—y, we find the
following system of equations:



Having put

(T +utx) (14 uox)?
14 ou?(v+2ud)x?
Ay (1 —u*x) (1 — uovx)?

A vu?(v + 2ud)x?

1—vty  [1—ufx 1—uovx
1+0v  \[14+ux 1+ uox

(7.) 1+ vty

10) 1o = VIR0 i)

14 vu?(v + 2u3)x?

14.

V+U=(1+x)AA, V+AU = (1+kx)CC,
V—-U=(1-x)BB, V—AU=(1—kx)DD

we see that it is:

where M denotes a constant quantity which can be found by comparison
of the coefficients in the expressions ABCD, V%c[ —
V = b+ bx’4etc., U = ax + a'x3+etc.
constant term becomes \/E, whence we see that in the product of all of
them the constant becomes bb, but in the expression V%

ABCD =M Vd—u - lldV
dx dx

becomes ab, whence:

U%. Now, having put
in the expressions A, B,C,D the

— U"% the constant

b
M= -.
a
) 3 3 ..
Therefore, in our example, because b =1, 4 = ”+U2” = ”(21;1” ) :

0 1)4

M= v+2u3  u(20+ud)’

whence it follows:
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dy v+ 2w dx

VI-@a-o) v JO-) (i)
The moduli k,A which we saw to depend on each other by means of an

equation of fourth order in § 13 (1.) are easily expressed rationally by the
same quantity «. For, from the formulas given above:

3 2 2
Dé:u?' 1+2“:£X( —f—OC):(X( +(X)

/i 1202

it follows:

whence it is:

3 3
s 2+a) 5 8 24+a\"
W=, T el TN

Additionally, it is: M = ﬁ, whence having put y = sinT’, x = sin T, the
equation:

dy B dx
V=)= A%y M1 =) (1= k)

becomes the following:

ar’ aTr

V203 — @+ a)si® T /(1420 232+ a)sin® T

or this one:

aT’ aT

V(142200 T+ (1—a)3(1+a)si® T /(14 2a) cos? T+ (1 +a)3(1 —a) sin® T

to which equation one gets by the substitution:

(1+2a)sinT + a?sin® T

sinT' =
1+a(2+a)sin®T
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1.6 A TRANSFORMATION OF FIFTH ORDER IS PROPOUNDED
15.

Now, let us treat the second simplest example in which m = 2,

V=14+x*4+V"x*, U=x(a+dx*>+d'x*), A=ax+pa>
We find:

AA =1+ 2ax + (2B + an)x* + 2apx> + ppx*,

whence it follows:

AA(1+x) =1+ x(14+2a) +x2(20 + 28 +aa) + x> (28 +aa +2ap) + x* (2B + BB) + BBx°.

From this we obtain:

b =20+2B+an, b’ =pBRa+p)
a=1+2x, a =2B+anx+2ap, da' =pp.

The equations (*) from § 12 become:

kb , ko, w K
”—\kaz' TV TEVT

From these it follows:

aa by

ﬂﬂ// b/l 4

or, because one has b’ = (2+a + ) + (B +an), a’ = B(1+2a) + (B + an),

[(2a+B) + (B+aa)]*  [B(1+2a) + (B+aa)]?

20+ B(1+2a) ’

From this it easily follows:

B(1+20) (20 + B) = (B+aw)?,
which expanded and divided by « yields:
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w3 =2B(1+a+p).

This equation can also be presented in these two ways:

(e + B)(a — 2B) = B(2a) (1 4 2a)
(ex+p)(2—a) = (x—2p)(2x+p),

whence it follows:

2—a )\’ 2a+p

a—28)  B(l1+2a)
Having prepared these things the remaining are easily understood. For,
having put k = u* and A = v* we find:

2e+p VWY Ao
B(1+2a) aa’ aa k ut
whence we also have:

2—a v?

x—28 u

Additionally, it is g = va’ = C/E = “75, whence the equations:
214_(2—oc>2_ 20+ B 2—a 07
B

ut - \a—28 (1+2x) a—28 u?

become the following:

200 + u° = uvt(1 + 2a)

u?(2 — ) = v(va — 2u)
or:

200(1 — uv’) = u(v* — u*)

u
a(v* 4+ u?) = 2u?(1 + u’v),

whence it is:
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(u? +0?) (u* — o*) +4uv(1 + 1) (1 — uv’) = 0.
After the expansion it results:
(1.) u® — 0° 4+ 5u%0* (u? — v*) + 4uv(1 — utvt) = 0.

The remaining things are found this way. From the equations:

it follows:

u(vt —ut) 20?1+ udv)

T —wd) T 2t o2

From this it is:

1/ 0v—ud
—142a ="
v e v<1—uv3>

5 5
5+2w:i)+21x:uvz<v u)

1 —uod

2> 2ut [ov—ud

B = (2
v-2p=a v v <u2+vz>

v —u’
2—0622'0(”2—'—02)

(a —2p)(2a — B) :u3<v_”5>.

an+p= 2—un 1 — uvd

Finally, from this one deduces:
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u(u? + %) (v — ud)
1—uvd

5 5
b’ = %(sz + B) = uv <H>

1—uvd

V=B+2a+an+p=

v—ud
contained in the following theorem:

Now, because M = % =0 (1’—‘”’3), the transformation of fifth order will be

Theorem

Having put:

(1) u® —0° + 5uuv?(u? — v*) + 4uv(1 — u*v*) = 0
2) y= o(v —u®)x +u?(u? + v?) (v — u®)x® + ul®(1 — uv®)x°
' — 02(1 — uod) 4+ uv?(u? + 02) (v — ud)x2 + ubv3 (v — ud)x*’

it is:
o(1—u®)dy (v —u’)dx

VA=) -2%2) VI -22)(1-usx?)

1.7 HOW TO GET TO MULTIPLICATION BY APPLYING A
TRANSFORMATION TWICE

16.

Considering the equations between 1 and v found in the propounded exam-
ples:

ut — ot + 2uv(1 — u?0?) =0

u® — v° + 5u%0* (u? — v*) + 4uv(1 — utot) =0,
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it is immediately seen that they remain unchanged if u is substituted for v
and —o for u. From this it follows from a theorem found in the first example
having put:

ut — vt + 2uv(1 — u?0?) = 0
oo+ 2u®)x + ubx®
02+ 03u2(v + 2ud)x?’

that it is:

dy _ o2’ dx
JAT w0 a0 )

on the other hand having put:

u(u—20%)y + oby°
U2+ uBv?(u — 20%)y?

it is immediately derived that it is:

dz u-—2v° ‘ dy
JI-ai-ez) o« Aoy
But it is:
o+2u®\ (u—20%\  2(u*—ovt) +uo(l —4uP0?) 3
v u - uv -
whence it follows:
dz —3dx

VA=A -u¥) VI -2) (1 - uba?)

To find 3 instead of —3, either z has to be changed to —z or x to —x.
In like manner d from the theorem given in the second example having put:
. u(u+0°)y — 03 (u? 4+ 02)(u +0°)y® + 010 (1 + udo)y’
u2(1 4 uBv) — u?o(u? + 02) (u + v°)y? + udvt (u + v°)y*’
it is deduced that one finds:

dz u+0° dy

V(1 —22)(1 - uB2?) ~u(l+udo) VI —12)(1 = 8y2)
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Now since from the equation:
u® — v® +5u%0* (u? — v?) + 4uv(1 — uv) (1 — u'o*) = 0
it follows:

(u+0°)(o—u®)  wuo(l—utot) — (ub—2°) 5
uwo(1+ut0)(1 —uv®)  wo(l14+udo)(1 —uvd) 7

we see that:

dz 5dx

VA=2)1—-1u822) /1 —2)(1—ubx?)

So, by means of a twice applied transformation one reaches a multiplication.

These two examples, the transformations of third and fifth order, I at first
exhibited in the letters I wrote to Schuhmacher in the month of June in the
year 1827. See Nova Astronomica Nr. 123. And, at the same place I published
the method by means of which they were found. On the other hand, they
were already found by Legendre two years earlier.

1.8 ON THE NEW NOTATION OF THE ELLIPTIC FUNCTIONS
17.

Having treated some algebraic questions we want to explore the analytic
nature of our functions in more detail. Primarily, it is necessary to introduce a
notation which will be useful in the following.

¢
. de
Having put { Weerero
amplitude of the function u. Therefore, we will denote this angle by amplu in
the following or in a shorter way by:

= u, the Geometers used to call the angle ¢ the

@ =amu.
So, if

X

dx
o / V=21 ke)’
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it will be:
X = sinam u.

Additionally, having put:

1
0/ ¢<1—x;§)<cl—k2x2 / -

1—k251n (p

we will call K — u the complement of the function u; we will denote the
amplitude of the complement by coam so that it is:

am(K — 1) = coam u.

Following Legendre, we will denote the expression \/ 1—k2sin®amu = daﬁ”
by:

Aamu = \/1 — k2sinZam u.

I will denote the complement, as it was called by Legendre, of the modulus k
by k’ so that:

kk + Kk =1

Further, in our notation it will be:

g
K/ — / dgﬂ
51— KK

The modulus which has to be kept in mind will be added either included in
brackets or at the margin, if it is necessary. Not having added the modulus it
is to be understood that the modulus is the same in all concerned formulas.

sin? ¢

It is convenient to call the expressions sinam u, sin coam u, cos am, cos coam 1,
Aamu, A coam u etc. and trigonometric functions of the amplitude elliptic functions
in the following so that we give that name another meaning than analysts have
up to now. We will call u the argument of the elliptic function so that having put

x = sinamu it is u = argsinam x. In the notation we just introduced it will
be:
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. cosamu
smcoamu = —

Aamu

k' sinamu

coscoamy = ——
Aamu
k/
Acoamu =
Aamu
1

tancoamu = T

k' tanam u

k/

cotcoamuy = ———.

cotamu

1.9 FUNDAMENTAL FORMULAS IN THE ANALYSIS OF ELLIPTIC
FUNCTIONS

18.

Letamu = a, amu = b, am(u +v) = 0, am(u — v) = 9; the fundamental
formulas for the addition and subtraction of elliptic functions are known:

sina cos bAb + sin b cos aAa

sino =
1 —k2sin?asin®b
cosacos b — sina sin bAaAb
CcoS0 = — >
1—k?sin”asin®b
AaAb — k% sinasinb cosacosb
Ao = 2
1 —k2sin“asinb
. sina cos bAb — sinb cos aAa
sind = ————>
1 —k2sin“asin“b
cos a cos b + sina sin bAaAb
cost = ————5
1 —k%sin“asin“b
A — AaAb + k? sina sin b cos a cos b

1 —k2sinZasin?b

To list all things which will be of use later we want to add the following for-
mulas which are easily demonstrated and whose number is easily increased:
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sino + sin ¢

cos o + cos ¥

Ao + AD

sing —sin ¢

cost — coso

A — Ao

sinosin®

1+ k*sinosind =

1+sinosind

1+ cosocost

1+ AcAd

1—Kk*sinosind =

1 —sinosind

1 —cosocos?d

2 sina cos bAb

1 —k2sinasin? b

B 2cosacosb

 1—K2sinZasin?b

_ 2AaAb

~ 1—K2sinZasin?b

_ 2sinbcosala

 1-—K2sin%asin?b
2sinasin bAaAb

1 —k2sin®asin®b
2k? sina cos b cos a cos b
1 — k2sin%asin®b
_ sin® a — sin® bAb
" 1—K2sinZasin?b
A2b + k2 sin® a cos? b
1 — k2sin%asin®b
cos? b + sin? aA%b
1—k2sin%asin®b
cos?a + cos? b
1 —k2sin®asin®b
A%a + A%
1—k2sin®asin®b
A%q + k2 sin® b cos? a
1 —k2sin%asin®b
cos? a + sin® bA2%a
1—k2sin%asin®b
sin aA%b + sin? bA%a
1 — k2sin%asin®b
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1—AcA?
(1+sino)(1+sind)
(1£sinco)(1 Fsind)
(1£sino)(1+sind)
(1£sineo)(1Fsind)
(1+coso)(1+cos?)
(1+coso)(17F cos?)
(1+ Ac)(1 £ AB)
(1+ Ac)(1 F AB)
sino cos ¢

sin® cos o

sin cAY

sin 0Ac

cos cAY

cos Ao

sin(o + 9)
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k?(sin? a cos? b + sin® cos? a)
1 — k2sin®asin®b
(cosb + sinaAb)?
1 — k2sin%asin®b
(cosa + sinbAa)?
1 —k2sin®asin®b
(Ab £ ksinacosb)?
1 —k2sin®asin®b
(Aa+ksinbcosa)?
1— k2sin%asin®b
(cosa =+ cosb)?
1 —k2sin®asin®b
(sin AaAb F sin bAa)?
1—k2sin®asin®b
(Aa + AD)?
1 —k2sin®asin®b
k% sin?(a F b)
1 —k2sin®asin®b
sina cos aAb + sin b cos bAa
1 —k2sin?asin®b
sina cos aAb — sinb cos bAa
1 — k2sin%asin®b
cos bsinaAa + cos asin bAb

1 —k2sin®asin®b
cosbsinaAa — cos asin bAb
1 —k2sin®asin®b
cos acos bAaAb — kK'k' sinasinb
1 —k2sin®asin®b
cosa cos bAaAb + kK'k' sinasinb
1 —k2sin®asin®b
2sinacosaAb
1 —k2sin®asin®b




2sinbcosbAa
1 —k2sin®asin®b
cos? — sin® aA%b
1 —k2sin®asin®b
cos? b — sin? A%a
1—k2sinasin®b’

(31.) sin(c—9) =

(32.) cos(o+0) =

(33.) cos(c—0) =

1.10 ON IMAGINARY VALUES OF ELLIPTIC FUNCTIONS. THE
PRINCIPLE OF DOUBLE PERIODICITY

19.

Let us put sin ¢ = itan ¢ where i is written for /—1 and more commonly used

c 015 m whence dp = ci)dslplp' Therefore, it

by geometers; it will be cos ¢ = secyp =
is:

do idyp B idyp

\/1 — k2sin? ¢ \/0052 P+ k2sin® ¢ 1 — k'K sin® ¢

We see that in our notation this equation goes over into this equation:

(1.) sinam(iu, k) = itanam(u,k').

From this follows:

(2.) cosam (iu, k) = secam(u, k')
(3.) tan am ik, k) = isinam(u, k')
‘ _ Aam(u, k') B 1
(4) & am(iu, k) ~ cosam(u, k') ~ sincoam(u, k')
. . o
(5.) sincoam(iu, k) = Aam(uK)
o
(6.) coscoam(iu, k) = % cos coam(u, k')
, —i
(7) tancoam(lu, k) = W
(8.) A coam (iu, k) = k' sin coam (u, k)
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Another system of formulas following from that one is this one:

(9.) sinam 2iK’ =0
(10.) sinam iK’ =oo orif it pleases = ico
(11.) sinam(u + 2iK’) = sinamu
(12.) cosam(u +2iK') = —cosamu
(13.) Aam(u+2iK') = -—-Aamu

. . 1
(14.) sinam(u +iK') = PrcE—

—iAamu —ik’

15. K') = -
(15.) cosam(u +iK’) ksinamu  kcoscoam u

1

(16.) tanam(u +iK') =

 Aamu

(17.)  Aam(u +iK') = —icotsinamu
Aamu 1
18. i iK' = =
(18.) sin coam(u +iK') kcosamu  ksincoamu
o
(19.) coscoam(u +iK') = kco;m
20. tanam(u 4+ iK') = “Aamu
k/

(21.) Acoam(u +iK') =ik’ sinamu.

From the preceding formulas which must be considered as fundamental
formulas in the analysis of elliptic functions it is obvious that:

a) the elliptic functions of the imaginary argument iv and the modulus k
can be transformed into another of the real argument v and modulus k' =
V1 — k2. Therefore, in general it is possible to compose elliptic functions of
the imaginary argument u + iv and modulus k from elliptic functions of the
argument u and modulus k and other of the argument v and the modulus '.

b) the elliptic functions enjoy the property of double periodicity, one period
being real, the other imaginary, if the modulus k is real. Both of them become
imaginary, if the modulus itself is imaginary. We refer to this as the principle of
double periodicity. From this, because it contains every possible periodicity, it is
clear that elliptic functions might not be counted among other transcendental
functions enjoying certain elegant properties, maybe even greater than those
of the elliptic functions, but they have a certain kind of perfection.
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1.11 ANALYTIC THEORY OF THE TRANSFORMATION OF ELLIPTIC
FUNCTIONS

20.

In the preceding paragraphs we saw that, if the polynomial functions of the
variable x, A, B,C,D, U,V are determined in such a way that:

V+U =(1+x)AA
V—-U =(1-x)BB
V+AU = (1+kx)CC
V—AU = (1-kx)DD,
having put y = % it will be:
dy dx

VI My -1 - )
while M denotes a constant quantity. Now, we want the general analytical
expressions of those formulas.

Let 1 be an arbitrary odd integer, let m and m’ be arbitrary positive or negative
integers which nevertheless do not have a common factor which also divides
the number n, let us put:

mK 4+ m'iK’
w = —

then, the following equations hold:
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x2
(i) (1 svme) - (O i)
M sin® am 4w sin® am 8w sin“am2(n — 1)w
)(1—

u
V = (1 —Kkx*sin? am 4w k*x? sin® am 4w) - - - (1 — k*x? sin?am 2(n — 1)w)
A

x
1
smcoam4w) 1+ smcoamSw) ( * sincoam2(n — 1)w>

x
B 1— (1=
smcoam4w> ( s1ncoam8w> <1 sincoam2(n — 1)w>
C = (1+ kxsincoam4w)(1 + kx sincoam8w) - - - (1 + kx sincoam2(n — 1)w)
D = (1 — kxsincoam4w)(1 — kx sincoam 8w) - - - (1 — kx sincoam 2(n — 1)w)
A =k"

[sin coam 4w sin coam 4w - - - sin coam 2(n — 1)w]*

. . . 2
n1 [ sincoam4w sincoam4w - - - sincoam2(n — 1)w
sinam 4w sinam4w - - -sinam2(n — 1)w

Having constituted all this this, if x = sinamu, itis y = Q = sinam ( M- A)

Before we attempt the proof of the formulas itself we will indicate their
transformation. For this purpose, we note the following formulas which are
immediately deduced from the formulas in §. 18.

. . sinam u — sin®am «
(1.) sinam(u + «) sinam(u — «) = — 5
1 —k?sin® am u sinam«
. . 2
o) [rsmamuraisinamu-w] (1 g
cos? am & 1 — k2 sin? am u sin® am «
5y [Losmam(utoll-snam-o)] (1)
cos? am & 1 — k2 sin® am u sin® am
() [1+ksinam(u + a)][1 4+ ksinam(u — «)] (1 + ksin am u sin coam &)
' A?amu ~ 1—K2?sinamusin®ama
(5) [1—ksinam(u + a)][1 — ksinam(u — «)] (1 — ksin am u sin coam «)°
' A?ama 1 — k2sin? am u sin? am &
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From these formulas it also follows:

2

__ _sin“amu
(6) cosam(u +a) cosam(u —a) _ 1= S iooama
cos? am « 1 — k2 sin® am u sin® am &
7) Aam(u+a)Aam(u — ) 1 —k?sin® am u sin? coam a
' A?ama 1—k?sinamusin®ama
Having put x = sinam u from formula (1.) we obtain:
x2 . .
~ sama —sinam(u + a) sinam(u — «)
2 7

1—k2x2sin?ama sin“am
from the formulas (2.), (3.) we find:
(1# greims)” _ [Lsinam(u + a)][1 4 sinam(u — )]
1 — k2x2sin®am« cos? am &
from the formulas (4.), (5.):

7

(14 kxsincoama)?  [1 4 ksinam(u + «)][1 + ksinam(u — a)]

1 — k2x2sin? am & A? ama

Hence, if one successively puts 4w, 8w, ---,2(n —1)w for «, but 4nw — « for
—u«, we will obtain:

B 1 i) (- ) (1~ )
M sin® am 4w sin® am 8w sin am 2(n—1)w

u
®) v 1 — k2x2 sin? am 4w][1 — k2x2 sin? am 8w] - - - [1 — k2x2 sin? am 2(n — 1)w]
sinam u sinam(u + 4w) sinam(u + 8w) - - - sinam(u + 4(n — 1)w)
- [sin coam 4w sin coam 8w - - - sin coam 2(1n — 1)w]?
2
©.) (1+x)AA _ (1+x){(1+sinc0§m4w) (1+sinco§m8w)”' <1+m>}
’ 14 [1 — k2x2 sin? am 4w][1 — k2x2 sin am 8w] - - - [1 — k2x2 sin® am 2(n — 1)w]
[1+ sinam u][1 + sinam(u + 4w)][1 + sinam(u + 8w)] - - - [1 + sinam(u + 4(n — 1)w)]
- [cosam 4w cosam 8w - - - cosam 2(n — 1)w)]?
2
(10.) (1—x)BB _ (1-x) {(1 - sinc0§m4w) (1 - sinco)e;mSw) e (1 - sir\coam)fl(nfl)w>}
14 [1 — k2x2 sin? am 4w][1 — k2x2 sin am 8w] - - - [1 — k2x2 sin? am 2(n — 1)w]
[1 —sinamu][1 — sinam(u + 4w)][1 — sinam(u 4 8w)] - - - [1 — sinam(u + 4(n — 1)w)]
- [cosam 4w][cosam 8w] - - - [cosam 2(n — 1)w]?
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(1+kx)CC (14 kx){[1+ kxsincoam4w][1 + kx sin coam 8w] - - - [1 + kx sin coam 2(n — 1)w]}2

(1) 14 B [1 — k2x2 sin? am 4w][1 — k2x2 sin? am 8] - - - [1 — k2x2 sin?am 2(n — 1)w)]
[1+ksinamu][1+ ksinam(u + 4w)][1 + ksinam(u + 8w)] - - - [1 + ksinam(u + 4(n — 1)w)]
- [Aam4wAam8w - - - Aam2(n — 1)w]?
(12) (1—kx)DD _ (1 —kx) {[1 — kx sin coam 4w][1 — kx sin coam 8w] - - - [1 — kx sin coam 2(n — 1)cu]}2
14 [1 — k2x2 sin? am 4w][1 — k2x2 sin? am 8] - - - [1 — k2x2 sinam 2(n — 1)w)

[1 —ksinamu][1 — ksinam(u + 4w)][1 — ksinam(u + 8w)] - - - [1 — ksinam(u + 4(n — 1)w)]

[Aam4wAam8w - -- Aam2(n — 1)w]?

Hence also these formulas follow:

N I CEN DU £ G
1—x2AB —J1_ 2 (1 sin? coam4w> (1 sin® coam&u) <1 sin? coam2(rﬁl)w)
14 [1 — K2x2 sin? am 4w][1 — k2x2 sin? am 8] - - - [1 — k2x2 sin? am 2(n — 1)w]
cosam u cosam(u + 4w) cosam(u + 8w) - - - cosam(u + 4(n — 1)w)

[cosam 4w cosam 8w - - - cosam 2(n — 1)w)]?

2.2 2 2,2 2 2,2 2
(14) V1-kx*CD _ m[l — k?x* sin .cozam4w] [1—Kk*x sin 2coamSw] o1 —k2x 51r21 coam2(n — 1)w]
14 [1 — k2x2 sin” am 4w][1 — k2x2 sin” am 8w)] - - - [1 — k2x2 sin® am 2(n — 1)w]
_ AuAam(u+4w)Aam(u + 8w) - - - Aam(u + 4(n — 1)w)

[Aam4wAam8w - - - Aam2(n — 1)w]?

—~
—_
[S8]

N

|

1.12 PROOF OF THE ANALYTIC FORMULAS FOR THE
TRANSFORMATION

21.

Now, let us demonstrate that having put:

2
1-y=(1-x) {(l - sinc0§m4w) (1 - sincozmSw) T <1 - Sincoamjcz(n,l)(‘})}
Y [1 — K22 sin? am 4w][1 — k2x2 sin® am 8] - - - [1 — k2x2 sin? am 2(n — 1)w]
_ [1—sinamu][1 — sinam(u + 4w)][1 — sinam(u + 8w)] - - - [1 — sinam(u + 4(n — 1)w)]

’

[cosam 4w cosam 8w - - - cosam 2(n — 1)w)?
both the remaining formulas and this one are found:
dy B dx
VA=) -222) MY(1-22)(1 - k)

if:
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A= k" [sin coam 4w sin coam 8w - - - sin coam 2(n — 1)w]*

Mo (_1)%1 [sin coam 4w sin coam 8w - - - sin coam 2(n — 1)w]?

[sinam 4w sinam 8w - - - sinam2(n — 1)w]?

From the propounded formula it is clear that y is not changed at all if u goes
over into u 4 4w. For, then every factor will transform into the subsequent
one but the last into the first. Hence y is generally not changed if u + 4pw is
substituted for u where p denotes a negative or positive integer. On the other
hand, if u = 0, it is:

[1 —sinam4w][1 — sinam8w] - - - [1 — sinam4(n — 1)w]

1—y= =1
Y [cosam 4w cosam 8w - - - cosam 2(n — 1)w]? ’

or y = 0. For, it is easily seen that it is:

—sinam4(n — 1)w = am 4w
—sinam4(n — 2)w = am 8w

whence

2

[1 —sinam4w][1 — sinam4(n — 1)w] = cos” am 4w

2

[1 —sinam 8w][1 — sinam4(n — 2)w] = cos” am 4w

2

[1 —sinam2(n — 1)w][1 — sinam4(n + 1)w] = cos”am2(n — 1)w

Now, because y = 0, if u = 0, and vy is not changed, if u + 4pw is substituted
for u, y vanishes in general, u takes on the following values:

0, 4w, 8w, - A4(n—2)w, 4(n—1)w,

to which the following values of the quantity x = sinam u correspond:

0, sinamé4w, sinam8w,---,sinam4(n —2)w, sinam4(n—1)w
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which can also be exhibited this way:

0, +sinam4w, Zsinam8w,---,+tsinam?2(n—1)w,

The values of the variable x it can have while y vanishes will all be different
and their number will be nn. Now, from the assumed equation between x and
y from which we started, having put:

V = [1 — k*x?sin® am 4w][1 — K*x? sin*am 8w] - - - [1 — k*x? sin? am 2(n — 1)w]
= [1 — k*x*sin®am 2w][1 — kK*x? sin? am 4w] - - - [1 — k*x? sin?am(n — 1)w)],
and y = ¥, it becomes obvious that U is a polynomial function of n-th order
of the variable x. Because this functions vanishes together with y for the
following n different values of the quantity x:
0, +sinam4w, Zsinam8w,---,+tsinam?2(n—1)w,

it necessarily has the form:

2 2 2
150 ) () (- s
M sin” am 2w sin® am 4w sin“am(n — 1)w

=31 (o) (- sema) (O )
M sin® am 4w sin® am 8w sinam2(n — 1w/’

where M denotes a constant. Because, having put x =1, we have 1 —y = 0 or

y = 1, from the equation y = ¥ we obtain:

1 1 1
1= (1 o sin2am2w) (1 o sin2am4w) o (1 o sinzam(n—l)w)
M1 — k? sin® am 2w][1 — k2 sin” am 4] - - - [1 — k2 sin® am(n — 1)2w]

(—=1)"7 [sin coam 2w sin coam 4w - - - sin coam (11 — 1)w)]?

M[sinam 2w sinam 4w - - - sinam(n — 1)w|?

whence it is

(—1)"7 [sin coam 2w sin coam 4w - - - sin coam(n — 1)w]?

M=
M[sinam 2w sinam 4w - - - sinam(n — 1)w]|?




There is a remarkable relation among the functions U, V, I mean the relation
mentioned above, according to which it happens that, having put % for x, at
the same time y goes to /\iy where A denotes a constant.

For, having put = for x, the expression:

2 2 2
-0 ) ) )
M sin” am 2w sin” am 4w sinam(n — 1)w

goes over into this expression:

%4 1
Mx"  k"[sinam 2w sinam 4w - - - sinam(n — 1)w]?’

(=)

On the other hand by the same substitution

V = [1 — k*x*sin® am 2w][1 — kK*x? sin® am 4w] - - - [1 — k*x* sinam 2(n — 1)w]
goes over into this expression:

w1 U
(—1)T]ﬁ - M[sinam 2w sinam 4w - - - sinamn — 1)w]?.

Hence having replaced x by 2, y = Y goes over into:

u 1
V MM - k*[sinam 2w sinam 4w - - - sinam n — 1)w]?2”’

or y into Aiy if it is put:

A = MMK" [sinam 2w sinam 4w - - - sinam(n — 1)w]*

= k" [sin coam 2w sin coam 4w - - - sin coam(n — 1)w]*.

This was to be proved.

From the propounded equation:

2
{(1 B sincozm4w) (1 - sinco§m8w) T (1 o sincoame(n—l)w> }

l-y=(1-—x ’
y=I ) [1 — K2x2 sin? am 4w][1 — k2x2 sin? am 8w] - - - [1 — k2x2 sin?am 2(n — 1)w]
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having put & for x, )%y for y, what is possible from the preceding, we find:

i—l—l kx
Ay AU

{[1 — kx sinam 4w][1 — kx sinam 8] - - - [1 — kx sinam 2(n — 1)w] }*

which multiplied by Ay = A4 yields:

{[1 — kx sinam 4w][1 — kx sinam 8] - - - [1 — kx sinam 2(n — 1)w]}>

1—-Ay = (1—kx) v

Furthermore, it is clear that y = % goes over into —y if x is changed to —x
having done which we therefore immediately also obtain 1 +y, 1 + Ay from
1-y, 1-Ay.

Therefore, we have now found polynomial functions U, V of the variable x of
such a kind that it is

V+U =V(1+y) =(1+x)AA
Vv—-u =V(1-y) =(1-x)BB
V+AU=V(1+Ay) = (1+kx)CC
V—-AU=V(1-Ay)=(1—kx)DD,

where A, B,C,D also denote polynomial functions of the variable x. But,

from this according to the initially proved principles of the transformation it
immediately follows:

dy B dx
VA0 ) MJ/0-o)0- ke
We obtain the multiplicator M, as we will call it from now on, from the obser-

vation made in § 14. Therefore, now all general analytical formulas concerning
the theory of the transformation of elliptic functions are demonstrated.

22,

The propounded proof is derived from the one we gave in the Nova Astronom-
ica Nr. 127 edited by Schuhmacher where w is written instead of %, (-1) M
instead of M, while all other quantities are the same. First, I had communi-
cated the general analytic theorem on the transformation in a slightly different
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form at the same place to the analysts in Nr. 123. Legendre, the greatest judge
in this doctrine, wanted to review that proof ibidem in Nr. 130 in great detail.
This in many ways venerable man observed that the equation:

au dav. ABCD T

[ T T VA 7
on which the proof is based and which in this treatise followed from principles
of a mere algebraic transformation, can also be proved analytically without
using those algebraic formulas. Because this remark of this remarkable man
sheds much light on our theorem, let us demonstrate that equation in the

same way as Legendre did, making less assumptions.

The propounded equation:

du dV. ABCD T
Vi Y= M M

can also exhibited this way:

du dv _dlogl dlogV ABCD T
Udx Vdx  dx dx  MUv  MuUuv’
But we found:

2 2 2
u:x<k_*f)@_.2x>.“@_.2 x >
M sin” am 2w sin® am 4w sin“am(n — 1)w
V=

[1 — kK2x?sin? am 2w][1 — k*x? sin? am 4w] - - - [1 — kK*x? sin am(n — 1)w],

whence it is:

dlogl dlogV 1 —2x 2k?x am 2qw
dx dx  x +E{ ’

+
sinfam2qw 1 — k2x2sin® am 2qw

after having assigned the values 1,2,3,- - -, 51 to the number denoted by g.
Furthermore, we found:

x? x? x?
1 ) () O )
sin” coam 2w sin” coam 4w sin® coam(n — 1)w

2

CD = [1 — k*x* sin® coam 2w][1 — k*x? sin? coam 4w] - - - [1 — k*x? sin® coam(n — 1)w],
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whence it follows
2 .
T ABCD _ x1 (1 - Sinzxcoamzpw) (1- k2x2 sin? coam 2pw)
Muv- muv X217 (1 - 2pcu> (1 — k2x2 sin? am 2pw)

sin? am

7

if in the products, for the sake of brevity denoted by the prefixed sign [], the
values 1,2,3, - - - ”51 are assigned to the variable p. This expression can be

decomposed into simple fractions such that it has this form:

1 Ay B@)

_|_
siffam2qw 1 — k2x2sin? am 2qw
Having done this, in order to reach what was propounded it must be demon-
strated that it will be:

AW = 2 Bl = 2k2gin? am 2qw

In the following we will denote the product formed in such a way that the
values 1,2,3, - -, ”7*1 are assigned to the element p by the prefixed sign H(q),
but the value p = g is omitted. Hence from the well-known theories of simple

fractions it follows:

_ sinZ am 2qw
H ( sin2 coam 2pw )
1—k2 sin? am 2qw sin? am 2pw
_ sinZ am 2qw
H(q) sin? am 2pw
( 1—k2 sin? am 2qw sin? coam 2pw )

Now, from the formulas we exhibited above it is:

2

AW = (1 — k? sin? am gw sin? coam 2qw)

_ sin? am 2qw
sin? coam 2pw cosam(2g + 2p)w cosam(2p — 2q)w

1 — k2 sin? am 2qw sin® am 2pw cos? am 2pw

sin? am 2qw
sin” am 2pw cos coam(2q + 2p)w cos coam (2p — 29)w

% coam 2pw cos? coam 2pw

1 — k? sin? am 2qw sin
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But having removed the factors which are the same in the denominator and
numerator it easily seen to be:

I cosam(2g + 2p)w cosam(2g — 2p)w +1
cos? am 2pw ~ cosam2qw
1(1)[ cosam(2q + 2p)w cosam(2q — 2p)w F1 . cos? coam2qw  F cos coam 2qw
cos? am 2pw ~ cosam2gw coscoam4pw  coscoam4qw

whence we find:

A — = (1—Kk? sin? am 2qw sin? coam 2qw) cos coam 4qw

cos am 2qw cos coam 24w

But from the mentioned duplication formula it is:

2k’ sin am 2qw cos am 2qwA am 2qw

cos coam 47w = 1 — 2k2sin? am 2qw + k2 sin* am 2qw

_ 2k'sinam 2gw cos am 2gwA am 2qw

~ A2am2qw — k2 sin® 2qw cos? am 2qw

_ 2coscoam 2gw cos coam 2w

~ 1—K2sinam 2qw sin? coam 2qw’
whence finally, as it was to be demonstrated, it is A(W = —2. In like manner
the other equation: B = 2k? sin”> am 2gw can be proved; this is nevertheless,
already having found A7) = —2, achieved more easily the following way.

Having put ;= instead of x it is easily seen that the following expression is
not changed:

%) (1 — k2x? sin® coam 2pw)

(1-;
H sin“ coam 2pw

(1 — k2x2 sin® am 2pw) (1 - xiz) ’

sin? am 2pw

which expression can be put equal to the expression:

942 (9) 42
1+2 i 2x +Z B\ x

sin® am 2qw — x?2 1 — k2x2sin? am 2qw’
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But this expression, having put 7 instead of x, goes over into this one:

x2

2 —BW@)
1+ +
L 1 — k2x2sin? am 2qw )y k2 (sin? am 2gw — x2)
B@) 2k2x? sin® am 2qw —~B@
—1+Y [2-——F—— |+ + :
)y < k2 sin” am 2qw> )y 1 — k2x2sin? am 2w L k2 sin® am 2qw

whence for this expression to remain unchanged, what has to happen to
complete the proof, it has to be:

B = 2k?sin” am 2qw.

Q.D.E.

23.

From formula (14.) in § 20 it follows:

CD
/1 A22 = K242
1—-A%y? = 1ka

_ m [1 — k%x? sin? coam Zw] [1 — K252 sin?

coam4w] - - - [1 — k2x? sin

sin

2

am 2qw — x2’

coam(n — 1)w]

[1 — k2x2 sin am 2w][1 — k2x2 sin? am 4w] - - - [1 — kK2x2 sin® am(n — 1)w]

Having put x = 1, whence also y = 1 and v1 — A2 = A/, itis:

A K A coam 2wA coam 4w - - - A coam(n — 1)w )
N Aam2wAamdw---Aam(n — 1)w

But it is:

/
A coam =

amu’
whence it is:

K"
[Aam2wAam4w - --Aam(n —1)w]*

(1) AN=

Further, using the formulas:

(2.) A = k"[sin coam 2w sin coam 4w - - - sin coam (1 — 1)w]*

1 [sin coam 2w sin coam 4w - - - sin coam(n — 1)w]?

3) M=(-1)

7

[sinam 2w sinam4w - - - sinam(n — 1)w)|?
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we obtain:

(-7 [A . . : )
(4.) i o = [sinam 2w sinam 4w - - - sinam(n — 1)w]|
(5.) ST = [cosam 2w cosam 4w - - - cosam(n — 1)w]
k"
(6.) G = [Aam2wAam4w - --Aam(n — 1)w]?
(-7 2
(7.) i k’” = [tanam 2w tanam 4w - - - tanam(n — 1)w]
A
(8.) I [sin coam 2w sin coam 4w - - - sin coam(n — 1)w]?

)\A/k/

M
(10.) VAK"2 = [Acoam 2wA coam 4w - - - A coam(n — 1)w]?

n 1
11. ~1)* T M ——— = [tan coam 2w tan coam 4w - - - tan coam (1 — 1)w]?.
/\/k/ifl 2

By means of these formulas the formulas (8.), (13.), (14.) § 20 go over into
the following

—~

n
(12.) sinam (%,A) =1/ % sinam u sinam(u + 4w) sinam(u + 8w) - - - sinam(u 4+ 4(n — 1)w)
/ki’l

(13.) cosam (%, )\) =\ qjm cosam cos am(u + 4w) cosam(u + 8w) - - - cosam(u +4(n — 1)w)

(14) Aam (12,2) :\/k):—nAamuAam(quéLw)Aam(u+8w)--~Aam(u+4(n—1)w)

whence also:

Mm

(15.) tanam(%,/\): %tanamutanam(u+4w)tanam(u+8w)-~~tanam(u+4(n—1)w)

So, another system of formulas is found. From equation (4.) it follows:
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Yo [sinam 2w sinam 4w - - - sinam(n — 1)w]4,

whence it is:

2

1— —2t— 2 2
. u X sin? sinam 2pw kM x* — sin” am 2pw
= sinam —,)\) = — = T x ,
Y (3 Mnl—k2x2sin2am2pw [l PR —
sin“ am 2pw
or:
0= x]](x* - sin®am2pw) — isinam (1 A) I <x2 - 1> _
kM M’ k2 sin? am 2pw

The roots of this equation of n-th order are:

x =sinamu, sinam(u+4w), sinam(u+8w),--- ,sinam(u+4(n—1)w),

whence we obtain the identity:

A u 1
2 2 i — 2
x[](x* —sin am2pw)—msmam(M')‘)H<x _kZSinzam2pw>
2

2 2

= [x —sin®? am u][x — sin? am (u + 4w )] [x — sin® am(u 4 8w)] - - - [x — sin? am(u + 4(n — 1)w)].

From this the sum of roots results as:
(16.) ) _sin(u +4qw) = A sinam (i A) .
kM M’
In the same way it is found

n—1

(17.) ) _cosam(u + 4qw) = (_1k)Mz cosam (%,)\)

(18.) Y Aam(u +4qw) = @A am (i,)&>

M M
A u
(19.) ) tanam(u +4qw) = iy fanam (M,A) ,
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in which formula the values 0,1,2,3,--- ,n — 1 are assigned to the number 4.
It is convenient to represent also these formulas in this way:

A u . . .
p Snam (M,/\> = sinam + ) [sinam(u + 4qw) + sinam(u — 4qw)]
(-1)"7A u
[ Sinam (M' )\) = cosam + ) _[cos am(u + 4qw) 4 cosam(u — 4qw)]
WAam<u A) =Aam +) [Aam(u +4qw) 4+ Aam(u — 4qw)]
M [V 1 1
/
u
i anam (M,A> = tanam + ) _[tanam(u + 4qw) + tanam (1 — 4qw)],

where the number g takes on the values 1,2,3,- - -, ”T’l Now, let us note the
following formulas:

2 cosam4qwA am 4qw sinam u

1 — k2 sin® am 4qw sin® am u

sinam(u +4qw) + sinam(u — 4qw) =

2 cosam 4qw cosam u

1 — k2 sin® am 4qw sin® am u

cosam(u + 4qw) + cosam(u — 4qw) =

2A am4qwA am u

2

Aam(u +4qw) +Aam(u —4qw) =
( 1) ( 1) 1 — k? sin® am 4qw sin® am u

2A am4qw sinam 1 cos am u

tanam(u + 4qw) + tanam(u — 4qw) = 5

. 7
cos? am4qw — A? am 4qw sin” am u

using which the formulas (16.) — (19.) go over into these:

A u . 2 cosam4qwA am 4qw sinam u
20.) ——sinam|(-—,A =sinamu +
(20) kM (M ) )y 1 — k2 sin® am 4qw sin? am u
(-1)"7'A u 2 cos am 4qw cos am u
21) —~*——cosam |(—,A) = cosamu +
(21, kM <M ) L 1 — k2 sin® am 4qw sin® am u
(-1)"7'A u 2A am 4gwA am u
22.) ——A —,A =A
(22 M am <M ) am -+, 1 — k% sin® am 4qw sin® am u
! u 2A am 4qw sinam u cos am u
23. tanam ( —, A = tanamu + ,
(23.) k'M <M ) L cos? am 4qw — A2 am 4qw sin® am u
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which are also obtained, if the formulas propounded above are resolved into
simple fractions by known methods.

1.13 ON VARIOUS TRANSFORMATIONS OF THE SAME ORDER. TWO
REAL TRANSFORMATIONS, OF A LARGER MODULUS INTO A
SMALLER AND OF SMALLER INTO A LARGER

24.

We saw that we can assign an arbitrary value of the form "‘K%’”/ZK to the
variable w while m and m’ denote positive or negative integer numbers which
nevertheless, if n is a composite number, do not have a factor of 7 in common.
But it easily seen, if g is a prime number, that the values M will not
exhibit different substitutions. Hence, if n itself is a prime number, all values

of the variable w which yield different transformations will be:

K iK' K+iK  K+2K  K+3iK' K+ (1 —1)iK’
n n’ n n n n !
or also:
K iK' K+iK  2K+iK  3K+iK  (n—DK+iK
n/ n Vs n v n Vs n v v n V4

or, if it pleases:

5 K K+iK' K+2iK' KZ43iK K+ ”T’liK’

n 7 ;’l 4 n 7 n 7 n 7 7 n 7
or also:

5 ﬁ K+iK' 2K+iK' 3KZ+iK ”T_lK + iK'

n V4 n Vs n v n Vs ]/l v v n v

whose total amount is 7 + 1. And indeed we saw in the transformations of
third and fifth order propounded above as examples that the equations among
u = vk and v/v, which we called modular equations, ascended to fourth and
sixth degree, respectively. But if n is a composite number, this number is
vastly increased; for, the cases in which either m or m’ or even both have a
certain common factor, but the common factor of m, m’ is not a factor of n, are
additionally to be included. In general, the following theorem holds:
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"The number of mutually different substitutions of n-th order by means of which it
is possible to transform elliptic functions is equal to the sum of factors of n which
number nevertheless, if n is not square-free, contains substitutions mixed from a
transformation and multiplication, and hence, if n is a perfect square, contains the
multiplication itself.”

Therefore, this sum of factors will denote the degree to which for given
number n the modular equation will ascend, where it is to be noted, if n is a
square, that one of the total number of roots will yield k = A, and generally
that, if n = mov?, while m? denotes a mixed square dividing n, all of the total
number of roots also will be roots of the modular equation which belongs to
v itself.

Among the values of the variable w propounded above which in the case of a
prime n, which case, since the remaining case reduce to it, is convenient to
consider it separately, yielded the total amount of transformations, generally,
only two are found which yield real transformations; namely w = X, o/ = %
In the following, we will call the one case the first transformation, the other
the second. And we will denote the moduli corresponding to them by A, A4,
respectively, and their complements by A’, A|. We will denote the arguments
of the amplitude 7 corresponding to these moduli (Legendre calls them
complete elliptic integrals) by A, Aj, A/, A}. Our general formulas for these

two case are the following.
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I

Formulas for the first real Transformations of the Modulus k into the
Modulus A.

4
2K 4K — 1)K
A =k" {sin coam — sincoam — - - - sin coam u}
n n n
K"

4
{A coam <> 2K A coam => 4K - A coam (n=1)K 1)K }

A=

2
sin coam K sin coam g - sin coam =K 1)K
M =
21< 41< (n—1)K 1)1<

sinam <> sinam ** -sinam

sinam u 1— 5mz amu 1— smz amu (1= sin? am u
M sinZ am 2K ZK sinZ am % sinZ am w

(1—k2 sin?am K sin? am u) (1 — k2 sin? am 2K sin? am u) (1 — K2sin?am @ sin?am u)

1 [k, . 4K\ | . 4(n—1)K
(-1) = 7 sinamusinam u+7 sinam u+— -sinam ll-l—#

2 2
0 mi sin“ am u Sll’l amu sin“amu
cosa (l Sll’l2 coam =~ ZK ) < sm coam > < (n l)K >
sm coam

(1—k2 sin? am % sin? am u) (1 — k2sin% am % sin? am u) (1 — k2sin% am M sin?am u)

Akn 4K 8K 4(n—1)K
=1/ 57 cosamucosam | u+ — Jcosam (u+ — | ---cosam | U + ———
AK n n n

Aam (1 — k? sin? coam & sin? am u) (1 — k? sin? coam ﬂ sin? am u) (1 — k% sin? coam @ sin?am u)

sinam (%,/\)

cosam(;I /\) =

Aam (l,)\> = 1)K
(1—kzsm am&sm amu) <l—k2 sin amgsm2 amu) (1—k251n amgsmzamu)

! 4K K 4(n—-1)K
= ),\nAamuAam<u+—>Aam<u+8—>-~~Aam<u+(ni)>
k n n n

1 _ _sinamu 1 — _sinamu (1= sinam u
. \/1 —sinamu sin coam % sin coam g sin coam M

1+ sinamu ; ;
(1 + sinam u 1 + Sll’lamléK> . (1 + - Sma?(,il)K
n

sin coam g sin coam S sin coam

1:F)\sinam( ,)\)
)

1+ Asinam (

Zl=[xl=

4K SK 2(n— l)K

B 1 — ksinamu ( — ksincoam %> sinam u) (1 — ksincoam 2* sinam u) (1 — ksincoam =——= sinam u)
1+ ksinamu (1 + k sin coam % sinam u) (1 + ksin coam g sinamu) - - (1 + k sin coam M sinam u)
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A u . (fl)qcosam%Aamﬁsinamu
—— sinam (—,A) = sinamu +22 5 T
kM M 1 — k2 sin aqusin2 amu

A u (—1)1 cosam%cosamu
—cosam(—,/\) :cosamu+22 K
kM M 1 — k?sin am?Tsin am u

2gK

1 u Aam = =Aamu
= Aam <—,)L) =Aamu +2 i
M M Z:lszsinzam#sinzarnu

! u tanam 22X sinam 1 cosam u
—tanam(—,A) :tanamu+22 n
k'M M cos? am% — A2am 2K gin2amu.

n
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II.

A. Formulas for the second real Transformation, of the Modulus k into the
Modulus A; under an imaginary Form

0o iK' iK' (n—1K*
/\1 =K S coam sSin coam c--sSIncoam ————
n n n

m
A= k
e 20K 4K/ (n-1)ik’ | *
{Acoam L~ A coam - --Acoam#}
1)iK’ 2
1 smcoamMsmcoam 4’K smcoarnu
M= (71) 2 7
sinam <> Z’K sinam i -..sinam M
n n

sinam u 1— sm2 amu 1— sin? am u (1= sin? am u
) u M, sin2 am 2iK. 21[<’ sin2 am %K. 41](’ sin2 am (rz—}l)iK’
sinam [ —, A
M, 1— sm2 amu 1— st amu 1= sin? am u
sin? am K- ’K’ sin? am 3K 3’K, sin2 am (=2iK

n
k. ) 4K\ 8iK' ) 4(n —1)iK’
=4/ sinamusinam | u + sinam | u + ceesinam | U + ——————

M n n n

202 02 202
m sin amu sin® am u sin® amu
cosamu <1 sin? coam 2K ZZK/ > (1 sin? coam 2K 4’K > (1 2 7(” 1iK )
sin® coam

u
cosam <—,A1) =
Ml <17 sinZamu am u ) 1— sm amu > <17 sin? am u >

( sin2 am 31K’ 2 (n—2)iK’
n
=41 Cosamucosam<

sm am £

/\/ n
u+

sin“ am
8iK’ 4(n — 1)1'K’
cosam | u + -e-cosam (U + ——F—
Ak n n

Aamu(1— sm amu 1— _ sinfamu |\ ... 1— sin? am u
7
A ( u A ) sin? coam— sin coamM sin2 coamM
am LM (

M,y 1— sm amu sm amu (1= sin? am u
T . 5 a2l N
sinZ am ‘K sin am 3’K sin2 am 7(”75)’](

4iK’ iK' 4(n —1)iK’
= ,,AamuAam u+ ! Aam u+81 ... Aam u+u
I n n n

1 —smam<

)

W)‘
l—&-smam(w A)

1— sinamu 1— sinamu (1= sinam u

ol 211( 41[( n—1)iK

1 sSimmamiu sin coam ! sin coam sin coam 7)/
1+ sinamu 1 sinamu 1 sinamu 1 sinam u

+ 7 + 7 e + — 7
sin coam £~ z’K sin coam #- ‘“K %

sin coam

1— Aqsinam (Ml—’l,/h)

1+ Aqsinam (M‘—’l,/h)
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1 sinamu 1— _sinamu _}  (q_ __ sinamu __
i ; iK’ . iK’ T
\/ 1—ksinamu sin coam K- sin coam 3K sin coam 5>’K

1+ ksinamu 1+ sinam u 1+ sinam u 14 sinam u
7 - -
sin coam K sin coam 3K’ sin coam (”*5)1’“

n n

~1)iK' — 1)K’
——— sinam ( A > si + 2 - cosam nl)lK Aam 21 an sinam u
;M =sinamu + - e
K M k sin? am M — sinamu
a1 1 . _1VviKk! k!
(G u 2(-1)"7 (=1)7sinam (29 ,,P’K Aam & nl)’K cosamu
kM. Cos am ﬁ’/\l = cosamu + = 2 A
! ! ! sin?am == —sin’amu
n-1 1 . it e
(-1 u 2(-1)"7  (=1)7sinam (2 ”D’K Aam & nl”K cosam u
TA am ﬁ’/\l =Aamu + _ E T
! ! ! sin?am q# — sinamu
M q 24iK’ .
—1 u (—1)7Aam L= sinam u cosam u
M tanam ﬁ’/\l =tanamu + 2 S o
1 1 cosam L= — A2am % sin am u
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II.

B. Formulas for the second real Transformation in real Form

le

M

{Aam (ZTK/,k’) (4710,,(/)

(= Rf

! ! _ / 4
A=K {sincoam <%,k’> sin coam (%,k’) -+ -sincoam (%,k’) }

ol

sinam <ML1'A]) =

cosam (Miﬂ)\l) =
u

Aam (E,M) =

sinam u

sin am u

sin? am u

1

s

U
tan? am ( %/k’)

e

4
tan? am ( % K

-

. 4 . d .

smcoam(%,k’) sin coam (%,k’) sin coam - - - ((" DK’ k’)
. 2K . 4K’ :
smam(T,k’)51nam(7,k’>smam~~~<( n) ,k’)

sin? am u

~DK’
tan2 am ( % ,k/)

}

fus

102
sin” amu 14+
tanzam(&/ k’) } {

sin? am u .
tan? am(SK k’)

202
1 sin® am u
{ * tan? am(sz)K/ ,k’)

cosam u {1 sin? am uA? am <2K )} {1 sin? am uA? am (4K )} {l — sin? am uA? am(("fnl)[(d}

am u

Sln2
{” taam (£ 1 } {”

Aamu {1 sin? am uA? am (K )} {1 sin? am uA? am (3K )} {1 — sin? am uA? am <<n7nz)l</

sin? am u .
! /)
T

tan? am ( KL g

)
1+ sin® am
{ tan2 am ( @ ,k’)

u

5 Y 2
14 —sin®amu 1+ sinamu A1 sinamu
{ tan? am(KT’,k’) tan? am ( 3TK’,k’> n—
n

\l 1 —sinam (A’T‘l,)q)

1+ sinam <L,A1>

tan? am(ﬂ,k,)

{l —sinam uAam | 2

}

/1 —sinamu
“ V1+sinamu

{1-sinamuaam (2, k) } {1 - sinamuaam (4, ){

{1+s'mamuAam(zTK/,k’)}{1+smamuAam< )

J 1— Aqsinam (M‘—’l,/h)

1+ Aqsinam (M‘—’l,/h)

{1—Aam(

g )sinamu} {1 — Aam (%,k’) sinamu} s

{l +sinamuAam (%

n

{1 — Aam <("72)K/

|
=L =)

,k’) sinam u

/1 —ksinamu
“ V1+4ksinamu

{1+Aam(

‘N :‘N

K
K
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sinamu 41+ Aam %ﬁ,k/ sinamu g -+
)sinamu} {1+ 8am (%7, k) sinamu}

{1 + Aam <("7nz

K’

,k’) sinamu

)
i



Aam ((2'771) k’) sinam u

Ao ( u ) . 2
sinam (| —, A =sinamu + —
kM, M k= sin? am ((2’7 DK k’) + cos? am (7(2’7_”1>K/,k’> sin®amu
(—1)"7" < 2(71)’%1 (71)‘7sinam(M k’)Aam(M k’) cosam u
cosam ,A1> =cosamu —
kM My k sin? am (M k’) + cos?am (M k’) sin? am u
1 . (2q—1)iK’
(-1)2 ( u > n-1 (=1)7sinam ““—"=Aamu
Aam | —, Ay =Aamu —2(-1)z 1
My My sin? am (M k/> + cos?am <M k’) sinamu
A u (—1)7 cosam (%,k’)Aam (zq—K/,k’) sinam u cos am u
/—1tanam <—,A1> :tanamu-i-ZZ o
k' My M 17A2am<q k’)sm amu

In the formulas for the first transformation (—1) 7' M was put instead of M.
It was convenient to exhibit the formulas for the second transformation in two
ways, both in imaginary and real form, in which additionally 1

(n—2m)miK’ 7
7

2mzK

sinam
1 2mzK

(n—2m)miK’
COs am —n

everywhere: this was, as the reduction to the real form, easﬂy done by means
of the formulas given in § 19. Where the ambiguous sign + was appears, the
first + is to be chosen, if ”Tfl is an even number, the other —, if ”Tfl is an
odd number; the contrary holds for the sign F. In the sums denoted by the

prefixed sign ) the values 1,2,3,- - -, ”T’l are to be assigned to the number g.

, kcosam ““% etc.

etc. was written instead of ksinam

From the formulas propounded for the first transformation it is clear, if u
successively takes on the values:

K 2K 3K 4K

01 — 7 7 -7
n n n n
that am (44, A) will be:
T 3
= =, 2
O, 2, 7-[/ 2 7 7-(1 7
whence we obtain:
K R
nM

On the other hand, we have seen in the second transformation, if u is:
0, K, 2K, 3K, --- oramu: 0, 7, 71, 37”,~ .-, that also am (Mll,)q) is: 0, 7, 71, 37",~ .
whence in this case it is:
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K
2 AL
M, !

By the way, it is obvious from the formulas for the moduli A, A/, A1, A} while
n increases that the moduli A, A} converge to zero rapidly, and hence at the
same time the moduli A’, A get very close to 1. Therefore, it is convenient to
call the first transformation of the modulus transformation of the greater into the
smaller, the second transformation of the smaller into the greater.

1.14 ON COMPLEMENTARY TRANSFORMATIONS OR HOW FROM THE
TRANSFORMATION OF ONE MODULUS INTO ANOTHER THE
TRANSFORMATION OF ONE COMPLEMENT INTO ANOTHER IS

DERIVED
25.
In the formulas found above:
u "
tanam <M' /\) = |/ 7 tanamutan am(u +4w) tanam(u +8w) - - - tanam(u +4(n — 1)w)

. . . . 17 ! ! ,_ ; . .
let us put u = iu/, w = iw' so that it is w = PEEMIK "y — mK=miK Byt jt ig

(§ 19): ' '

tanam(iu’, k) = isinam(u/, k)

tanam(iu/,A) = isinam(u/, ),

whence we see the mentioned formula to goes over into the following:
/
sinam (MM,/\') = (~1)" sinamu/ sinam(« + 4w’) sinam(u’ +8c') - - - sinam (i’ + 4(n — 1)w’) (mod. k')

Further, we found:

K"
[Aam2wAam4w - --Aam4(n — 1)w]*
nt [sin coam 2w sin coam 4w - - - sin coam(n — 1)w]?
[sinam 2w sinam 4w - - - sinam(n — 1)w]?

A=

M= (-1)



which from the formulas:

. 1
Aam(iu k) = sin coam (u, k')
. . 1
sin coam (iu, k) = Aam(, )’
whence it also follows:
sincoam(iu, k) —i _ —isincoam(u, k')
sinam(iu, k) ~ tanam(u,k’)Aam(u, k') sinam(u, k')

go over into the following;:

A = K" [sin coam 2w’ sin coam 4w’ sin coam(n — 1)w']*  (mod. k')

[sin coam 2’ sin coam 4w’ sin coam (1 — 1)w']?

M= (mod. k')

[sinam 2w’ sinam 4w’ sinam(n — 1)w’]?

Having compared these formulas to those which serve for the transformation
of the modulus k into the modulus A:

kn
sinam (M'A) =\T sinamu sinam(u + 4w) sinam(u 4 8w) - - - sinam(u + 4(n — 1)w)
A = k" [sin coam 2w sin coam 4w - - - sin coam(n — 1)w]*
M _ (_1)%1 [sin coam 2w sin coam 4w - - - sin coam(n — 1)w]?

[sinam 2w sinam4w - - - sinam(n — 1)w)]?

this reveals a theorem, which has to be considered to be of highest importance
in the theory of transformations:

Whatever formulas on the transformation of the modulus k into the modulus A can be
propounded, the same hold, having changed k into k', A into ', w into ' = %, M

1

into (—1)"2 M.

But we will call the transformation of the complement into another comple-
ment, derived from the propounded transformation in the way just described,
complementary transformation.

It is easily seen that the real transformations of the modulus k’ are the com-
plementary ones of the real transformation of the modulus k, such that
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nevertheless the second of the modulus k' is the complementary of the first of
the modulus k, and the first of the modulus k' is the complementary of the
second of the modulus k. For, if in the theorem just propounded one puts

14 . . .
w = £X, w = #K which corresponds to the first and second transformations
. . / U .
of the modulus k, itis ' = ¢ = T2, ' = ¢ = %, which corresponds to

the second and first transformations of the modulus k’, respectively. Because
while the modulus grows the complement decreases and vice versa, if the
transformation of the complement into the complement is the transforma-
tion of the greater into the smaller, the transformation of the complement or
the complementary transformation must be the one of the smaller into the
greater and vice versa. Therefore, we see, having changed k into k/, that A
goes over into Al Aq goes over into Al Only the multiplicator M, common
to the first transformation and its complementary counterpart, will go over
into M;, which belongs to the second transformation and its complementary
counterpart, and vice versa M; into M. Hence from the formulas found above:

K K
A= — AN = —
aM VT M
these ones follow:
K’ ;o 5’

Ap=——, N=T,
L aM, M

whence these formulas of highest importance in this theory emerge:
AN K A 1K

=N—; ——=—-—.
A K’ A, n K

These formulas define the genuine character of the propounded transforma-
tion, whence it is clear that we justly referred the particular transformations to
the particular numbers n. I mention, if n was a composite number = n'n”, that
from the particular real roots of the modular equations or from the particular
real moduli into which the given modulus k can be transformed by means of
a substitution of n-th order one reaches equations of this kind:

N n K

A an K
which correspond to the particular factorization of the number n into two
factors. Therefore, from their total number, if n was a square, it will also be:
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AI K/

AT K
which in the case in which 7 is a square tells us that from the total number of
substitutions there is one which yields a multiplication.

whence A =k,

1.15 ON SUPPLEMENTARY TRANSFORMATIONS FOR MULTIPLICATION
26.

Let us recall the formulas:

A YK A,

having written which in this way:

AN K AN 1K
n

A K’
AR
K’ A
-
K Ay

it becomes clear that the modulus A depends on the modulus k in the same way
as the modulus k depends on the modulus Ay, or the the modulus k depends on the
modulus A in the same way as the modulus Ay depends on the modulus k. Therefore,
by means of the first transformation or of the greater into the smaller, in which
k is transformed into A, A will be transformed into k; by means of the second
transformation or of the smaller into the greater, in which k is transformed
into A1, A will be transformed into k. Therefore, after the first transformation
after having used the second before or after the second after having used the first before
the modulus k is transformed into itself, or the first and the second transformation
applied successively, in an arbitrary order, yield a multiplication.

Let us denote the multiplicator which depends on A in the same way as M;
depends on k by M’, and let us denote the multiplicator which depends on A4
in the same way as M depends on k by M; such that the following equations
are obtained:



dy B dx
V-0 -2 M- 2)1 - k)

dz B dy
VI=20-F2) M=) 1R

of which the one corresponds to the transformation of the modulus k into
the modulus A by means of the first transformation, the other to the trans-
formation of the modulus A into the modulus k by means of the second
transformation. From these equations it results:

dz dx
JA-2)(1-_kZ) MMJ1-_2)1_ ka2

whence z = sinam (MLM’) .

But from the equation A = ML1 by changing k into A, having done which K
goes over into A, A; into k, A; into K, M; into M/, one obtains K = ﬁ having
compared which equation to A = ﬁ wiwp = 7 results, whence it is:

dz ndx

JA-2)(1-k2) JI-2)1-~x)
In the same way, from the equation A = X by changing k into A;, having

done which K goes over into Aq, A into k, A into K, M; into M}, K = nAﬁ,
1
. . . _ K . . 1 _ .
having compared which equation to Ay = 3, this yields WM = Y hence we
see that in those two cases after two successively applied transformations the

argument is multiplied by the number 7.

after

If after the transformation of the modulus k into the modulus A A is then again
transformed back into the modulus k such that a multiplication results we
will call this transformation the supplementary transformation for multiplication
of the latter or simply supplementary.

Let us both for the sake of an example and the use for the following list the
formulas for the supplementary transformation of the first or of the modulus A
into the modulus k which transformation will be the second transformation
of A; we will nevertheless only list them in the imaginary form, since the
reduction to the real one is easily done. We immediately obtain these formulas,
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if in those which were propounded above for the second transformation of
the modulus k (confer Table II, A. §24) we put A instead of k, k instead
of Ay, 37 instead of u, M = ﬁ instead of M;, whence s = nu instead
of Mll In these formulas, but only in those, the modulus will be A, if the
modulus k is not explicitly added; furthermore, for the sake of brevity we
puty = sinam (44, A); as above one has to assign the following values to the

number g:

n—1

1.2.3 ...
1131 4 2

1.16 FORMULAS FOR THE TRANSFORMATION OF THE MODULUS A
INTO THE MODULUS k OR THE SUPPLEMENTARY OF THE FIRST

27.
o 2iN 4N (n—1)iN' \*
k = A" < sincoam sin coam -+ -sincoam ————
n n n
m
¥ = A
= ) . IVYVEY!
{AamZZTA/Aam‘“TA/ .- -Aam%}
. iN - iA . —1)iN 2
1 (—1) a1 | sincoam % sin coam % -+ - sin coam %
- = (— 2
. . _ AT
nM sinam —2’;[\/ sinam 747:1\/ .. .sinam =0 :l)lA
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nMy (1 L

2
. 1_y7
Z’A)( sin? am

2

y
41/\/ R 2 (n—1)ir’
s’ am#

)

sinam(nu, k) = sin’am
1— v 1— yiz (1= oy
sin? am sin? am 247 sin? am 7(”731)"/\/
= ﬁ sinam n sinam n 4in’ sinam n + 8iA' sinam n + M
“Vok M M n M n M n
A—2(1-__ ¥ R N DU S
cos am(nu k) o 1 y (1 511'12 coam ZIA, ) <1 Sil’lz coam 417/\’ ) <1 Sil’l2 coam (’Z%i)l/\/ )
I 1——¥ Jf(1-—2~ ). (1-—¥
sin? am % sin? am 24 3”\, sin? am (”%)’A/
L cosam s cosam X 4N’ cosam 2 + 8iA’ cosam 2 + M
kA M M M M n
A2 (1 vV v N
A am(nu k) - 1 /\ y <1 Sil’l2 coam % ) (1 Sll’l2 coam —— SXA, ) (1 Sll’l2 coam M )
' 1— L 1— " Vo1 v
sin? am 2% sin? am 247 E’A sin? am %
K u u 4N u 8N u  An-—1)iN
—A — A — A —
Vi amMcosam(M+ " ) am(M+ " m(M+ " )

2
1— yi/
sm coam sm coamT

2
(1= —¥
511’12 coam ~—— - —

(n— 1)1/\’ )

1 —sinam(n 1-—
1+ sinam(nu, k) am(n 1 +
sm coam M

i

sm coam

(n=1)in’ )
n
-
sin? coam %

yZ
(1 L
sSin” coam ———

\/1 — ksinam(nu, k)

1— v 1— v ...
. \/ 1-Ay sin? coam 4’ sin? coam %A”

1+ ksinam(nu, k) 1+ Ay 2 2 P2
1+ sin? coam A 1+ sin? coam 3171\’ e\ sin? coam M
(k) = Ay 2y o cosam LI A 5y (20- DA
sinam(nu, —
inM ~ knM sin? am CLUN _ 2
n-1 29-1)iN’ (29-1)iN’
~1 1y 2/1- 1)7 (29— 1A’
cosam (s k) — )T A V1—12 Z sinam o 'A/am -
knM iknM sin2 am (%4 n)l —y2
n-1 . (29—-1)iA’ (29-1)iA’
(-1) T 24/1—A2y2 . (—1)7sinam cosam
Aam(nu, k) =-——1/1—A2y2 + i 7 © 7
nM inM sin am (24*1)1/\ 2
' "y/T— 12 1)7Aam 2‘7“‘
tanam(nu, k) = /A y 21 y/ Y - 5 Z)A am SAT
KnM /T — kK'nM cos? am 204 yzAz i

70



I already communicated this general analytical theorem on the supplementary
transformation of the first to Legendre at the beginning of August 1827, which
he also wanted to mention in the note mentioned above (Nova Astronomica
a. 1827, Nr. 130). A similar system of formulas for the other supplementary
transformation of the second or the transformation of the modulus A into the
modulus k could have been stated. To render all these things more clear, it
was convenient to give a complete list of the fundamental formulas for the
first and second transformation and their complementary and supplementary
transformation in the added table.

Only one of the total number of imaginary transformations has a supplemen-
tary one for multiplication. Let us suppose, which is possible, that the numbers
m, m’ in § 20 do not have a common factor: Further, let my’ —um’ =1 p, p/
denoting whole positive or negative integers. Now, if one puts w = VK%}\Z’K,
in our general formulas propounded on the transformation in § 20 and k and
A are interchanged, one obtains formulas extending to the supplementary of

the transformation. Having put m =1, m’ = 0itis u = 0, 4’ = 1, whence

pKpiK K N ohich vi :
M = am = 5 Which yields the supplementary of the first, as we saw
already.
A. First Transformation with Supplementary
2K 4K — 1)K
(a) A = k"sin* coam o sin* coam P sin* coam (n=1K (mod. k)
2iA 4iN —1)iN
(aa) K" = A"sin* coam ln sin* coam ln - -sin* coam % (mod. A)
)\n
= - . =T (mod. M)
Atam 22X Atam .. Atqm U
() M - sin® coam % sin® coam % - sin? coam Y'I;TI)K (mod. (k)
sin am % sin am % ---sin?am %
1 sin? coam 22 sin? coam %’ . . . sin? coam (U
W) = n 2 n - (mod. A')
nM sin?am % sin? am % - -sin? am %

sinam(u, k) = x; sinam (%,A) =y; sinam(nuk) =z
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<
Il

n

n— kn
(¢) (—1)711/75inamusinam <u+—> smam(
x (1 _
o M (l sinzam%> <1 sin? am7> < sin2 am (n— 1>K>

(1 —K2x2sin” am 2K) ( — k2x2sin? am 4K ) — kK2x2sin? am M)
At u u 4N\ u 8N u  4(n—1)iN
(cc) z = [ sinam o sinam { 7 + ) sinam ( + p” -sinam + (mod. A)
v i .
ity (14 ot ) (1 ) (1 )

- (14222 tan?am 22°) (14222 tan?am 42°) - - (14 A2y 2 ant am o) (mod- 2

) sinam - (u + M) (mod. k)

(mod. k)

Complementary Transformations

2iK 4iK —1)iK
(@) A =K"sin* coam 17 sin* coam 17 - -sin* coam % (mod. k')

K"
= (mod. k)
Atam 2KAtam 2K .. Atam 7("7”1)1(
’ ’ _ ’
(aa) k¥ = A" sin* coam % sin* coam % - -sin* coam w (mod. A")

(b) and (bb) are the same as above.

sinam(u, k') = x; sinam (IM[,A’) =y, sinam(nu, k') =

m

() y= Ws'mamusinam<u+%>s'mam<u+¥>~~~sinam<u+w> (mod. k')

x Yiz . x2
M (1 + tanzam > (1 + tan2 am == K ) <1 + tanzam 7(;1 1)K )

= (mod. k)
(1 + k'2x2 tan? am %) (1 + k'2x2 tan? am %) (1 + k2 x2 tan? am M)
_ -1, u . u 4N u 8N u  4n-1)A ,
(cc) z=(-1)2 sinam - sinam (M + 7) (M + 7) <ﬁ + — (mod. A')
2 2 2
_ Y _ ¥ _ Y
- I’lMy (1 sinzam£> <1 sin? am4—A/> <l szamw> (mod A/)
(172\’2y sin? am 24/ ) ( — A2y2 sin? am 47/\’) (17A’2y sin amw>
K K
Ae o a= B
nM’ M
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B. Second Transformation with Supplementary

, 2iK’ 4K n—1)iK'
(@) A =k"sin* coam sin* coam -+ sin? coam (n = Dik’ (mod. k)
n n n
kl’l
= mod. K
Atam 2K At am 4K . Adqm (ZUK ( )
n n n
. 2A1 . 2A . n—1)A
(aa) k = A sin coam 2L sin* coam 2L - . - sin* coam (n=1)h (mod. Ap)
n n n
sin? coam & sin? coam ﬂ - sin? coam M ,
&) M = 2 21< 2 41< 2 (n— 1)I< (mod. k)
sin“am £~ sin“am £~ - - - sin®am "~
1 sin? coam ZAl sin? coam 4A1 -+ - sin coam %
(bb) Ty 5 2A 5 4A — DA (mod. Ap)
niviy sin®am =1 sin®am =71 - - - sin” am ~— =1

sinam(u, k) = x; sinam (Mi,/h) =y, sinam(nuk) =z
1

. i 4K o 8iK’ . 4(n —1)iK’
(¢) y=4/-—sinamusinam (u+ sinam [ u + .. .sinam [u 4 2= DIk
A , . _
X x2 X2 x2

(1 + k2x2 tan? am %> (1 + k2x2 tan? am 4710) e (1 + k2x2 tan? am 7(”*”1)1(/)

(cc) Z*(—l)%\/AT sinam - sinam ——&-& sinam L—&-% sinam ( —— +
- k M, M, M; n M,

s s s
any 1 Zamﬁ 1 N blnzamﬁ o 1_ slnzam&

B (17/\2y sin? am ZAl) (1 A2y2 sin? am 4A1) (l — A2y2 sin? am %)

Complementary Transformations

2 ! ! _ 1 K/
(@) A, =K"sin* coam - sin* coam R sin* coam % (mod. k)
2iA 4iN —1)iA
aa) kK = Ay"sin* coam 21 Gint coam — 2L . - sin® coam (n=1)ir mod. A
m 1
AT
1
= mod. Aq
A*am %A‘* am 221 - A*am 2A1 ( )
(b) and (bb) are the same as above.
sinam(u,k') = x; sinam (ﬁ A’) =y; sinam(nu, k') =
1
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n— " ! ! _ !
(c) y:(71)71’/];—,smamusmam(u+%)sinamusinam(qu%)---sinamusinam(u+u> (mod. k')

n
X x? x2 2
" (17 sinzam%—%’> (1* smzam%’) <1’ ﬂ)
(1 k?x2 sin? am LK’) (1 *k’2x2sin2am471<') ( _ K2x2gin amM>
4in 8iA 4(n—1)iA
\/7$1nam sinam <Mil+ lnl)sinam(MilJr ln1>...sinam (A%jt%) (mod. A})
nMyy 1+ v 14 s 1+#
v tan? a $ tanZ am 4/\1 tanzam%

= (mod. Aq)
(1 + A}%2 tan? am 201 ) (1 + A}%y2 tan? am 21 ) e (1 + A}%2 tan? am %)

(mod. k')

K K’
AN = —; A ="
1 M1 1 i’ZMl

1.17 GENERAL ANALYTICAL FORMULAS FOR THE MULTIPLICATION
OF ELLIPTIC FUNCTIONS

28.

Using two supplementary transformations it is possible to construct formulas
for the multiplication or formulas by means of which the elliptic functions
of the argument nu are expressed by elliptic functions of the argument u. To
illustrate this with an example let us compose the multiplication from the
first transformation and its supplementary one. For this purpose, recall the
formula:

n —
sinam (%,)\) = (—1)T Ii\ sinam (u+ 45) sinam <u—|— 85) -+ -sinam <u+ 4(111)1()

which can also be represented in this way:

(—1)L§1$inam<%,)&) \/7Hsmam<u+2mK>

while m denotes the numbers 0, £1, &2, - - -, £"5=. In this formula let us put
u+ 2m1;iK instead of u, whence 4 goes over into 4 + 22 ZK/ =yt ZmnlA : This

yields:
a1l u  2m'iN kn . 2mK + 2m'iK’
(—=1) 7 sinam <M + n,/\) =4/ xnsmam <u + n) .
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Now, if also the values 0, +1, £2, - - -, i”z;l are assigned to m’, so that both
m and m’ take on these values, after having taken the product we obtain:

-1 ) u  2m'iN [k , 2mK + 2m'iK’
(=1)"7 [ [sinam (M + n,)\) = THsmam (u + n> ,

where in the one product #/, in the other both m and m’ take on all the values
0, +1, £2, .-+, £2-1
But we saw in the preceding § that it is:

sinam(nu k)*\/ﬂsinamisinam i+4iA/ sinam l—&—SiA/ sinam l—f—w (mod. A)
oV ok M M n M n M n Y

which formula can also be represented this way:

, [A" _ u  2m'iN
(1.) sinam(nu, k) = - [ [ sinam (M + n,)\)

In the same way one finds:

T2 % 2mK + 2m'iK’
(2.) cosamnu = <k’> [ Jcosam <u + n)

1\ 1 2mK + 2m'iK'
(3.) Aamnu = (k’) [Jaam <u+n> .

These formulas are easily reduced to this form:

1— sinam u

. 7K

Sll’l2 am 2mK+3m iK

2mK+2m'iK’
n

4. sinamnu = sinamu
< ) H sinZam u

1 — k2 sin® am
sinamu
2 2mK+2m’iK’
n

sin“ coam

17K .
2mK+an iK sm2 am u

. 4 .
6) A A H 1 — k? sin? coam Zmitan 1K sin® am u
. amnu =nAamu . ——
1 — k2 sin? am 224K42m00K gin? am g

(5.) cosamnu = sinamu | |

1 —k2sin®am
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It is convenient to add the following:

2mK +2m'iK' (—1)"7'n

(7.) I sin® am

nn—1

n k™
nn—1

2mK + 2m'iK’ k'

8. 2 e i e S
(8.) [ [ cos?am » (k)
2mK + 2m’iK’ -1

) Aam———— =}z

(9.) [[Aam "

In the last six formulas the number m only takes on the positive values 0,
1,2,3,---, ”T_l, nevertheless in such a way that, if m = 0, only the positive
values0,1,2,3, ---, ”T_l are assigned also to m’. These and other formulas
for the multiplications were already published first by Abel in a different but

equivalent form, whence we were able to abbreviate on this subject.

1.18 ON THE PROPERTIES OF MODULAR EQUATIONS
29.

Since A depends on k in the same way as k depends on A and A} on k' in the
same way as k' on A’: It is clear, if one constructs sequences of moduli which
can be transformed into each other according to the same law where the one
sequence contains the modulus k, the other its complement k' that in them
the terms will occur in the same order one after another:

A,k Aq, e
e, i,k’,){, cee,

this was already observed and proved by direct calculation in the transforma-
tions of second and third order first by Legendre. Since similar results are
true for all transformed and imaginary moduli it is clear, while A denotes any
arbitrary transformed modulus, that the algebraic equations formed between
k and A or any between u = vk and u = /v which we called modular equations
are not changed,

1.) if k and A are interchanged
2) if k' is put instead of k, A’ instead of A.



we already observed this in the modular equations which belong to the
transformations of third and fifth order:

(1.) ut — ot + 2uv(1 — u?0?) =0

(2.) u® — v® + 5u%0* (u? — v?) 4 4uv(1 — utv*) =0,
and by means of clever observations exhibited algebraic formulas for the
supplementary transformations. To also check the others by examples, let us
transform those equations into others between kk = u® and AA = v® which

is not possible without long calculations. Having done them one obtains the
equations:

(1) (K> = A%)* =128K2A%(1 — k) (1 — A2) (2 — k? — A2 + 2Kk%A?)
2) (K —=A?)*=5122A0%(1 = k) (1 — A} (L — L'K* + L"k* — L'k®),

if in the second it is put:

L =128 — 192A% + 78A* — 7A°
L' =192 + 252A% — 423\* — 78A°
L" = 78 + 423A% — 252A* — 192A°
L" = 7 — 78A% 4 192\* — 128A°
These equations go over into a much more convenient form by introducing

g=1- 2k2, 1 =1—2A2 Having done this the propounded equations go over
into these:

(1) (-D'=64 (1—g)(1—1)[3+ql]
(2) (q—1)°=256(1—q°)(1—I*)[16q1(9 — qI)* +9(45 — qI)(q — I)°]
= 256(1 — g%)(1 — I?)[405(q* + I?) + 486q] — 9q1(¢* + I?) — 2704%1* + 164°].
These equations, if k' is put instead of k, A’ instead of A, whence g goes over
into —g, | into —I, remain unchanged, which was to be proved.

Corollary. Since we saw the propounded modular equations between g =
1 —2k?* and I = 1 — 2A2 to take on a sufficiently convenient form it can also
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be interesting to expand the functions H and K’ into a power series of the
quantity g. This happens beautifully by the series:

2 5.5.4 5:5-9-9.4°

K= (1+2q-4+2 4-6q-8+2 4-6-8-1067-12+"'>
_n<q+3-3-q3+ 3:3-7-7¢° +3-3-7-7-11-11-677 )
2J\2 ' 246 2:4-6-8-10 2-4-6-8-10-12

, 2 5.5.4% 5.5.9.9.4°

K= (1+2q-4+2-4-6q-8+2-4-6-8-10q-12+'”>
+7‘[<q+3-3-q3+3-3-7-7q5 3-3:-7-7-11-11- ¢4’ )
2]\2 2:4-6 2-4-6-8-10  2-4-6-8-10-12

where for the sake of brevity it was put:

I
0 1—%sinzgo

In an easier task the equation for the transformation of third order:

ut — vt + 2uv(1 — u?0?) = 0

can be transformed in such a way that the correlation among the modulus
and the complements becomes obvious. For, from that equation we obtain:

(1—ut)(1+0*) =1 —u*o* 4+ 2uv(1 — u?0?) = (1 — u?0?) (1 + uv)?
(1+uH)(1—0*) =1 —uo* — 2uv(1 — u?0?) = (1 — u?0?)(1 — uv)?,

having multiplied which equations it results:

(1—u®)(1-2% = (1 —u??)™

Now let:
1—ub =KK =u"®
8

1_08:/\//\/20/;
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having extracted the square root it is:

2.2

2 2
WY =1 — u?v?,

or:

127 10 = VIA - VAN =1,

which most elegant formulas were already exhibited Legendre. And the
formula is proved very elegantly by means of our analytical formulas, from
which it follows in the case n = 3:

k'3

A= k3 Sin4 coam 4(,4], )\/ = m,

whence:

k% cos am 4w

VkA = k% sin® coam 4w = A am Ao

K’?
VN =

Aamdw’

whence, because it is:

K'k' + kk cos? am 4w = 1 — kksin? am 4w = A% am 4w

we obtain, what was to be demonstrated:

VKA + VKA =1.

To find a simpler equation among u, v, u’, v’ in the second example, I proceed
as follows. I exhibit the propounded equation:

u® — v° 4+ 5u%0* (u? — v*) + 4uv(1 — uo*) =0
as follows:
(u? — %) (u* + 6u*0? + v*) + 4uv(1 — u*v*) =0,

which is easily seen to take on the following two forms:
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(u? —*)(u+0)* = —duo(1 —u*)(1 + o)
(u? —0?)(u —v)* = —duv(1 4+ u*)(1 —v%),

having multiplied which equations it results:

(1% — v?)® = 16u0?(1 — u®) (1 — 0®) = 16u20%u/%0"®.
Because at the same time, as it was proved above, u® and o8 go over into u’ 8
and 0’8, respectively, we also obtain:
(% — )8 = 160> (1 — u'®) (1 — v®) = 160 %0 uPoP.
Hence having done the division and extracted the roots it is found:

u? — 9?2

12

't
— u’z uo

or uo(u? —v%) = u'v' (v —u'%)

[
or:

VA = (Vk = V) = VEN (VAN = VE).

31.

There is even another extraordinary property of modular equations:

ut — o + 2uv(1 — u?v?) =0
u® — 0% + 5u%0* (u? — %) + duv(1 —u*o?) =0
which is seen on first sight, of course that they remain unchanged, if instead

of u, v one puts %, % To show this in general for modular equations, let us
note the following things, which can also be of use for other questions.

If one puts y = kx, one obtains:

dy kdx

W p(1-g) VO

Iz

whence, since at the same time x =0 as y = 0:
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Y dy

o/wly% (1-

Hence having put

yZ

kZ

X

dx

X

_ dx
] N

0/ VI )1 k)

it is:

y dy

4

ku,

/

) Ja-»a-%)

whence x = sinam(u, k), y = sinam (ku, %) Hence the following equation

results:

sinam <ku,

k

whence also:

l) = ksinam(u, k),

cosam <ku, ]1{> = Aam(u,k)

1
Aam (ku, k)

1 k
tan am <ku, k) =

ncoam (1. )
sincoam | ku, - | =
k
(ko3
coscoam | ku, —
k
A coam | ku 1 =
s

1
tan coam <ku, k)

81

= cosam(u, k)

1 08 coam(u, k)

1
sin coam(u, k)

ik’ tanam(u, k)

ik/

~ cosam(u, k)

—i
cos coam(u, k)



Further, by putting iu instead of u, because the complement of the modulus }
becomes & - using the formulas in § 19 we obtain:

1./
sinam <ku, ﬂ;) = coscoam(u, k')

1./
cosam (ku, lk) = sin coam(u, k')

k
ik/ 1
Aam (ku, k) ~ Acoam(u, k')
/
tan am <ku Ili > = cotcoam(u, k')

1!
sin coam <ku, Z:) = cosam(u, k')

1./
Cos coam <ku, ll;) = sinam(u, k')

21/
sinam (ku, ﬂ;) = cos coam(u, k')

1./ /
A coam (ku, ik ) = M

k k
ix ,
tan coam | ku, )= cotam(u, k).
Now, let us 1nvest1gate, what becomes of K, K’ or arg. am (5, k), arg.am (§,£'),

if one puts } instead of k; or let us investigate the values of the expressions
arg.am (%, k), arg.am (5, k'), which in the notation used by Legendre would

be: F' (1), F! <%) But, at first it is:

R N e M ey M e

Having put y = kx it is:

k 1
‘)/W ) (1-£) :k0/¢<1—y2><1—k2x2>‘



1

To find the other integral [ d—y2 let us put y = V1 — kK’k’x?, whence
k(o)

dy _ —kdx

\/(1—y2)(l—%§) VA=) (kKR

at the same time as y decreases from 1 to k, we obtain:

Now, because x hence increases from 0 to 1

1
dy .

kZ

1 1
_ dy _ dx
k/\/(1y2>(1z;> k/\/(1y2>(y21> 0/\/(1_x2)<1_k/k/x2>
Hence it results:

arg.am (7;, ]1<> = {arg.am (g,k) — iarg.am (g,k/>} =k{K—-iK'},

or if k is changed into }, K goes over into {K — iK'}.

Secondly, having put y = cos ¢ it is:

(S E]

1
/ 4y —k 9

15! V 1— KK Sinz ’
0 \/(1—]/2) <1+%y2) 0 ¢

whence it is:

”
arg.am (7;, Zk> = karg.am (g,k’) = kK,
or if k is changed into }, K’ goes over into kK'.
Therefore, in general, having changed k into {, mK + im'K’ goes over into
mK+(m'—m)iK' k

k{mK + (m" —m)iK'}, whence sin coam {kp( - i

sin coam {M, k} which from the formula

} goes over into

. 1 1
sincoam | ku, - | = ——————~
< k > sin coam(u, k)

becomes:

83

= —ikK’'



) kp(mK 4+ (m" —m)iK' 1 1
Sin coam (T kp(mK+(m'—m)iK’' ’
n k sin coam {pf,k}
Therefore, having put w = M = w, w = wy, the expression:

A = k" [sin coam 2w sin coam 4w sin coam 6w - - - sin coam (1 — 1)w]*,

having changed k into { goes over into this one:

1 1

k™ [sin coam 2w sin coam 4wy sin coam 6wy - - - sincoam(n — 1)wq]*  u’

where y itself is a root of a modular equation, or one of the total amount of
moduli into which the propounded modulus k can be transformed by means
of a transformation of n-th order. For, one of the values which w can have so
that a transformed modulus results will also be w;. Hence also the reason is
clear, why in general modular equations, having changed k into %, A into %
must remain unchanged.

Additionally, I mention, if according to the same law of transformation k is
transformed into k™), A into A" and if then k(™) is put instead of k, that also
A goes over into A(™); hence modular equations, if k is changed into k(") at
the same time as A is changed into Am) have to remain unchanged. So, for
the sake of an example, the equation VKA + VK’ = 1 which is a modular
equation for the transformation of third order, must remain unchanged, if one
puts %, %, instead of k, A, respectively, whence one has to put %T\/llg’ %T\/)A?'
which is known to be achieved by means of a transformation of second order.

The equation VkA + vVk’A’ = 1 goes over into this one:

(1-K)(1-\) N 2V AN
(I+K)A+A)  JaA+)a+A)

or:

2V = /(1 +K)(1+A) — /(1K) (1= 1),

Having squared both sides it results:



AVIAN =214+ KA")—=2kA, or kA=1+KN —2VKN,

which having extracted the roots reduces to the propounded one:

VKA =1— VKA or VKA+ VKN =1.

This example was already propounded by Legendre. But, it can be shown in
general on the composition of transformations that having used two or several
transformations successively that one reaches the same, no matter in which
order they are applied.

32.

But among the properties of modular equations there is one which I consider
to be most remarkable and outstanding, namely, that they all satisfy the same
differential equation of third order. For its investigation we will nevertheless have
to mention some things in advance.

It is well-known having put:

aK +bK' = Q
that it will be:
d>Q dQ
— 2 _ — 2 —_— =
k(1—k >dk2 + (1 —3k%) I kQ,

a, b denoting arbitrary constants. Therefore, having also put:

a/K+b/K/ — Q/’
a’, V' denoting other arbitrary constants, it will be:

dZQ/ ) dQ/ B ,
ot (-3 =k

Having combined these equations one obtains:

20/ 2 ! d
k(l—kz){Qddez —Q’fﬂg}Jr(l—CSkz){Qdko— ’Q}zo

k(1 —k?)

dk

whence after an integration:
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K1 — 1) {Qdko/ - Q'”;f} — (b — dbYk(1— ) {Kddi/ - K'fflf} — (ab — a'b)C.

The constant C was already found from a special case by Legendre to be
= — 7, whence now it is:

dQ'  ,dQ  1m(ab' —a'b)dk

Ca YT 2 ke

or

Q" 1 m(abl —a'b)
Q  2k1-K)QQ

Similarly, A denoting another arbitrary modulus, having put

d

aA+BA =L, aA+BAN =L,
it will be
d£ _ 1m(ap’ —a'B)dr
L'~ 2 A(1—AALL

Let A be the modulus into which k is transformed by a first transformation of
n-th order; further, let Q = K, Q' = K/, K = A, L' = A’; it will be:

L' _ AN _nK_nQ
L A K Q
whence it follows:

ndk A
k(1—K2)KK ~ A(1 = AAN)AA

But for the transformation we found A = %, whence:
1 A(1—A?)dk
MM =2 k(1 —K2)dA
In the second transformation, we saw that % = % . %, A = M%, whence:
dk ndAq

k(1—Kk2)KK — Aq(1—A2)A1A,
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whence also here:
1 A(1— /\%)dk
AﬁMﬁ_E'u1—Wmm‘

But generally, whatever the modulus A is, whether real or imaginary, into
which the propounded modulus k can be transformed by means of a transfor-
mation of n-th order, the following equation will hold:

A1 — A2)dk
k(1—Kk)dA~

To show this, I note that in general one obtains equations of the form:

MM=.
n

. aK + ibK’
A N="—""
oA +ip M
"K' +ib’'K
IAI . /A: a
WA nM 7

where 4, a’, «, ' denote odd numbers, b, V/, B, B’ denote even numbers, both
either positive or negative of such a kind that aa’ + bV’ = 1, aa’ + pp’ = 1.
Hence having put:

aK +ibK’ =Q, d'K +ib'K =Q'
aA+ibA' =L, oA +ipK=1L

because it is aa’ + bb' = 1, aa’ + BB’ = 1, we obtain:

1 wmak L0 1 mdd
Q  2k(1-k¥)QQ’ L 2A(1-A2)LL’
whence, because it is:
Q_U ,_Q
Q L - nM’
it is in general:
1 A1 —A?)dk
”“4_E'u1—ﬂmA'

I mention that the found equation can also be exhibited this way:
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Mo L A=) 1 A2 (1= A2)d(K?)
n R(1=k2)dA2)  n k(1 -k?)d(A?)’
whence we see that the expression MM is not changed, if one puts k/, A/
instead of k, A, or what we demonstrated above that in complementary
transformations, not taking into account the sign, the multiplicator M is
the same. Further, by changing k into A, A into k, having done which the
transformation goes over into the supplementary, MM is changed into

1. K(1—k)dA 1 or M into L
n A(1-A2)dk  nnMM nM’

what was already proved above.

33.

Having put Q = aK + ibK’, L = aA +iBA’ it is always possible to determine
constants a4, b, «, B such that L = % or Q = ML. Further, one has the
equations:

1) k-¥)te (1—3k2)dQ —kQ =

K2

d*Q dQ

3 2 _
(2)  (A=A)Zm +(1-301) 7= —1Q =0,

which can also be represented this way:

SRR (L) G

dk dk
d [(A—A3)dL B
(4) = {M} — AL =0.

Let us in the equation:

dZQ dQ
3 2 —

put Q = ML, it results:
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M dM
43 _ a2 _
L{(k )+ (1=3K) = kM}
dL 5 dM ) s L
+dk{2(k—k)dk+(1—3k )M}+(k—k)Md2k_0,

having multiplied which equation by M, we obtain:

(5) LM{(k—kf‘)dZM -3 i+ 4 {

dk? dk dk

(k—K)MMALY _
dk e

But from the preceding § it is:

(A= A%)dk (k— )MMAL (A — A3)dL
MM = —i@)ans Whence dk T A

Further, from equation (4.) it is:

TS

whence it follows:

d [(k=K)MMdL) 1d [(A—A%)) _ ALdA
dk dk T ondk | dA [ ndk

Hence equation (5.), having divided it by L, goes over into this one:

d>M adM AdA
(6.) M{(k k?) I + (1 —3k%) i kM} K 0.
If the value of M from the equation MM = 753:;,))‘;’; is substituted in this

equation, one obtains a differential equation for the moduli k and A, which
equation is easily seen to ascend to third order. After the cumbersome
calculation it is found:

k2 | |k —k3 A—A3| dk2

7y 24\ dAav LI 144272 _
' A Ak Ak dR —
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In this equation dk is considered as a constant differential. If it pleases to
transform it into another in which no differential is assumed to be constant,
one will have to put:

PA P dAdk

k2~ dke dkd

BAPA 3PARK dAPKk | 3AALK
P I I = S = S

whence it follows:

3d?A? 2dAdPA 3d*A% 3dA*dk* 2dA*dPk 2dAdPA

AT kAR T Ak dke o dks | de
Hence equation (7.) multiplied by dk® goes over into the following in which
no differential is assumed to be constant, or in which any arbitrary one can
be considered as such:

1+k2 2 1+A2 2
24242 24212 3 3 2442 2 2

This equation, having interchanged the variables A and k, is obvious to remain
unchanged, what we proved above on modular equations.

It is worth one’s while to investigate our differential equation of third order
by another method. For this aim, let us introduce the quantity:

(k—K)QQ =s.
into the equation from which we start:
?Q dQ
R NC Y N e
(k k)dk2+(1 3k)dk kQ=0
Itis
ds a2 .3 d£
o = (1-3k")QQ +2(k — k) o
Ps 2, 40 5, [4Q77 5~ &P
e —6kQQ + 4(1 — 3k )QW +2(k—k°) [dk] +2(k—k )Q@.

If in the equation one puts:
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2 d2Q 2,40
(k=) % =kQ— (1-30) =,

it results:

d%s o ~dQ 3, [dQ 2
g~ THQQ+2(1 - 3K)Q +2(k— k) [dk}
. ,dQ a2 .3 dQ B

Having multiplied this equation by 2s = 2(k — k*)QQ one obtains:

2sd’s 5 ~dQ ’ 3, ~40Q 2 2\ 4
or because it is:
dQ ds
0K 45 g2
2k-R)Q°2 = 2~ (1-31)QQ
2(1-3)QQ+2(k - ©)Q2 — % 4 (1 - 31%)00,
dk  dk
we obtain:
ZSdZS _ @ 2 _ (1 . 3k2)2Q4 . 8k2(1 o k2)Q4 — @ 2 _ <1 + k2)2Q4
dk? dk ds ’
or
2sd?s ds1?>  [1+k27°
o) BT M 4 [k ! kB} 55— 0.
But having put /K + V'K’ = Q, % = t we see that % = W =z,
where m denotes a constant whence s = md—‘f‘. Let us transform equation (9.)
into another in which dt is assumed to be constant. It will be % = ’gf;lf,

4> md®k md?k? .

Kz dtdk? dtdk3

having substituted these from equation (9.) it results:

arr

2d% 3K [14+K) dk?
df2dk ~ dak " |k — K
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or

| gk Y

where is to be differentiated with respect to t which went out of the equation.

212 512
(10.)  2d%kdk — 3d*k* + [Hk] aK

By putting % = w, one will be able to determine constants «, B, &/, p/, if
A is the transformed modulus, in such a way that t = w; and in like manner

we obtain:

14 A2
A—A3
in which equation it is to be differentiated with respect to t = w. Multiply
equation (10.) by dA?, equation (11.) by dk?; after the substitution one obtains:

2
(11.)  2d°AdA —3d?A* + [ } A\t =0,

1+k272 147272
37 331 20212 3120252 2712 2 2 _
(12.) dedA{dAdk dkd A} 3{dAdk ak*d* A }+dk A {{kk3} dk {Af/\3} dA? S =0.

But this equations agrees with equation (8.) in which we know that any
arbitrary differential can be considered as constant and even though having
done the substitution it was found that dt is a constant differential it will also
hold whatever other differential is considered as a constant.

So, lo and behold this differential equation of third order which nevertheless
has innumerable particular solutions and some of those particular solutions
are those we called modular equations. But the complete integral depends on
elliptic functions which is t = w or

dK+bK' oA+ BN
aK+bK' — aA+ BN’

which equation can also be represented this way:

mKA +m'K'A +m" KA +m""K'A =0,

m, m', m", m"" denoting arbitrary constants. This integration is to be consid-
ered to be of highest depth.

We could investigate whether modular equations for the transformations of
third and fifth order indeed (and they have to) satisfy our differential equation
of third order. But because this seems to demand too long calculations, it
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shall suffice to show the same for the transformation of second order, where

_ 1=K
A= 1+k""

Let us consider dk’ to be constant, it is:

o 1 — k, o 2 2 72 o
A =2 dk K
k'~ (1+K)2 k'~ k
)4 L S S
dk/Z - (1+kl)3 dk/Z - k k3 - k3
Pr 12 &k 3K
Kk (1+K)3 ak® K
Hence it is:
A2\ —dA2dPk2 16k 4
dk/é - k2(1+k/)6 k6<1+k/>4
AR - (1K) AR (1—K) —1]
k(14K k(14K
Further, it is obtained:
dkd®A —dAdPk 12K 6K 6K[2(1—K)*—1]
K’ TkA+K)E BA+K)? T R+
dkdA[dkd®A — dAdPK]  12K7[2(1 —K') —1]
dk’® - k6(l —|—k’)4 ’

whence it follows:

3[dk2d2A2 — dA2d2K2) — 2dkdA[dkd®A — dAGPK]  12(2K% —1)

dk’6 o k6(1+k’)4 :

Further, it is

k—K3 -

1+k]?dk2 (1+K?)?
dk? Kk
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2

1+A212dA2 4 [+ 1477 (1+K7)72
A=A gk? (1+K)* [1—K 2K’ K2ks
whence
1+R2)2dk® [1+A277dA% 3(1—2k")
k=K ] de?  [A=A] ak? kk?
dRdA [T1+R)7dk [14+A277dA% | 12(1 - 2¢7)
dk/4 - k— k3 dk/Z A— A3 dk/Z - k6<1 + k/)4 '
Hence it finally is and what is to be proved
3[dk2d2 A2 — dA2d%K2) — 2dkdA[dkd3 A — dAd3k]
dk’® C12(2k% 1) L1201 - 2%%) 0
dRdA? [[1+K) [1+A2]° dA TR K)E T RS(I AR T
k't | k=K A=A gk

If there would be a finished theory, if a differential equation has algebraic
solutions, to find them all, from the propounded differential equation we could
find all modular equations which belong to the single orders of transformation.
Nevertheless, I know no one who has tackled this difficult matter worth of
the analysts” attention, except for Condorcet.

34.

The equation found above

1 A(1—A%) dk

n k(1=K dr’

by means of which it is possible to also find the quantity M immediately from
the found modular equation, seems to be one’s while to consider it a little bit
more. It is not clear on first sight, how the values of the quantity M agree with
the equation found in the transformations of third and fifth order. Therefore,
let us consider this more accurately.

MM =

a) In the transformation of third order having put u = vk, v = v/A we find:

(1.) ut — ot + 2uv(1 — u?0?) =0,
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which equation we also exhibited this way (§ 16):

2) <v +v2u3) (u —uZUS) _ 5

Further, we saw that it is:

v 20% —u
(3. v+ 2u3 3u
Having differentiated equation (1.) we obtain:

du  20° —u+3ulv?

dv — 2uB 40— 3u2v3’

or having put (#) (21’?’7—”) instead of 3:

(4) @_203—u 1+ uvu? + 2udv
' dv  2u3+v 14+ u20v2—2uvd’
From equation (1.) it follows:

1—u® = (1 +ub)[1—o* +2uv(1 — u?0?)]
=1—uto* +u* — v + 2uv(1 + u*)(1 — u?0?)
=1—u*o* + 20”0 (1 — u?v?) = (1 — u?0?) (1 + u?v* + 2u°).

The same way one finds:
1-9® = (1 —u?0?)(1+ u?v® — 2uv’),
whence:

1-0® 1+ u?0® —2uv’
1—u8 1+ u202+2udv

7

or from equation (4.):

1-0% du  20°—u
1—ud do  2ud+0o”
Having multiplied this equation by:

0 T)z

3u (2u3 +v)(20% —u)’
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it results:

1ol a1 AL &k [ o
3 u(l—ud) dv 3 k(1-Kk?) dr |v+2u
QDLE.

b) In the transformation of fifth order having put u = vk, v = v/A we found:

2
} = MM,

(1.) u® — 00 + 5uv* (u? — v*) +4uv(1 — u'o?) =0,

which equation we also exhibited in these ways (§§. 16 and 30):

u+0° v—ud

(2) u(l+udv) v(l—ud) >

(3.) (u? — %)% = 16u%0*(1 — u®) (1 — o°).

Further, we found:

o(1—uv®) w4+’
vo—u®  5u(l+udv)’

4) M=

Having differentiated equation (3.) we obtain:

6uv(1—ud) (1 — o) (udu — vdv) = u(u® —v*)(1 —u®)(1 - 50%)do 4+ v(1? — v*) (1 - %) (1 — 5u8)du,

Having multiplied equation (1.) by u*, v* one finds:

5u? — ul® + 0% — 5ubv? = (1 — u'o?)(v? + 5u® + 4u°0)
507 — 0! 4 u? — 5u20® = (1 — uto*) (u® + 50% — 4uv°),
whence equation (5.) goes over into this one:

6) o(1-2%) du _ u®+50% — 4uv°
' u(l—ud) do 02 +5u2+4usv’

Putu+v°, u+u*v=B,v—u® =C,v— uv* = D such that:
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EZS’ or ACZSBD,
D A
c s M

u? +50% — 4uv® = uA + 50D
v* +5u% + 4u’v = vC + 5uB,

it will be:

) v(1-o°%) du _uA+50D _uAB+90AC D
’ u(l—u8) do ovC+5uB ovCD+uAC B
uB+vC AB _ AD

~w+uA BC  BC MM
For, it is:
uB 4+ vC = vD + uA = u® + v*.
Hence also:
_ 8 2
pa = LR du 1 A0 dk
5 u(l—ud) do 5 k(1—k*) dA
Q.D.E.
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2 THEORY OF THE EXPANSION OF ELLIPTIC FUNCTIONS

35.

Having propounded a real modulus k smaller than 1 we saw that the modulus

ey

A=k" {sin coam — sin coam — - - - Sin coam
n n

into which it is transformed by the first transformation of n-th order, while n
grows, rapidly converges to zero, and hence for the limit n = co itis A = 0.
Then, it will be A = 7, am(u,A) = u, whence from the formulas A = %,

U .
A = % we obtain:

2K N K’ K’
M=, Do T

T n nM 2K
Now, in the formulas for the supplementary transformation of the first in § 27
let us put ¥ instead of u and 1 = co: am (44, A) goes over into am (;4;,A) =
¢,y = sinam (44, A) into sin ¢, further am(nu) into am(u). Hence from

those formulas we obtain the following:

__r v G
2Ky <1 ) (1 ) (1 )
) (1

sinamu =
T 1— ¥ Y (1- £ v ).
sin? % sin? —3’2”1([( sin? 27K ’2"15
2 2 2
__Y _ y _ ¥ -
(1 cos? % > <1 cos? L’,QKI ) (1 cos? L}QKI >
cosamu = /1 —y?-
R R 1- Y
sin? % sin? —3’55/ sin? 751‘2755’
1— yiz, 1— L{ 1— L, ..
Aamu — cos? % cos? —3’2"1([( sin? —5’2’;’(

2 2 2
1 V(1o Y (1- 2 ...
< sin? ”215 sin? 7312”15/ sin? 27K ZZ”Ié(/
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- Y - SR
Tosinamu |14y ; . ;
<1+COSWI§/> <1+COSMKKI 1—}—@

Y
/1—ksinamu ‘
1+ksinamu y y y
(”) (” o |

inK’ 3inK’ 5intK’
sinamy — Y . ( cos - cos 25> N cos 2Z% L
mi = -2 inK _ .o 2 3ink _ 2 - 2 5ink _ 2
kK sin® T2 —y sin® 202 —y sin” 2702

5inK’

: YY) ik ;o 3inK’ :
ity/1—y ' sin “57 B sin =57 4 sin 257 o
sin

2 inK _ 2 .2 3inK _ 2 - 2 5inK. _ 2
K y s 7K y s K y

—mk!
3 — T _ 2Kx i U
In the following, let us pute « =g, 7¢ = x, oru = =2*, whence y = sin 5y =

sin x; it is:

minK' g™ —q™ _i(1—g¢*")

TR T 2q"
cos minK’ _ qm +q—m _ 1 _|_q2m
K 2 29’
whence it is:
1 v 1+ 49" sin®x 1 —2¢*" cos2x + q*"
sin2 mi;K’ - (1 _ qu)Z - (1 _ qu)Z
- v 4g*sin®x 14 29" cos2x + g*"
cos2 mi;(r[(’ o (1 + qu)Z - (1 + qu)Z
14 Y, 2q"sinx _ 142¢"sinx + 4>
cos ngK’ (1 + qu)Z 1+ qu

99



—cosMFE _ 29"(1+47")

sin? MK 42 1 — 242" cos 2x + g4

i sin MK’ _ 41—
sin? %K/ —y2  1-—2¢°"cos2x + gm

Having prepared these things and having for the sake of brevity put :

(A= A=) (1=
A_{(1—q2)(1—q4)(1—q6)...}
:{<1_q) (1—q3)(1—q5)...}2
A+¢) T+ (1145
:{(1_‘1)(1—173)(1—(75)...}2
A+ A+@) A+g) -

the following fundamental expansions of the elliptic functions into infinite
products result:

(1) sinam 2K¥ _ 24K o (=207 cos2x + %) (1 - 2¢% cos2x 4 ¢°) (1 —2q° cos2x +q %)
(1 —2gcos2x +¢?%) (1—2¢3cos2x + q°) (1 —2g° cos2x + ¢10) - - -
(2.) sinam& — B cosx- (1+24%cos2x + q*) (14 2¢* cos 2x + ¢%) (1 +24° cos2x +¢'2) - - -
. T (1—2qc032x+q2) (1—2q3c0s2x+q6) (1—2q5cos2x—|—q10)---
2Kx (1+2qc052x—|—q2) (1+2q3cos2x+q6) (1+2q5COSZX+q10)"-

(3.) Aam—— = C : ;
T (1 —2gcos2x+4%) (1—2¢%cos2x+ g°) (1 —2g°cos2x + ¢10) - --

() 1—sinam 2 [T —ginx (1 —2gsinx +¢%) (1 —2¢%sinx + ¢*) (1 — 2¢°sinx + %) - - -
' 1+ sinam 28 ~ Vi1+sinx (1+42gsinx+4?) (1+2¢2sinx +4g4) (1 +2¢3sinx +4°) - - -

(5) 1—ksinam% _ /1—sinx‘(1—2\/§sinx+q) (1—2/@sinx+¢%) (1—2\/Psinx+¢°) -
' 1+ ksinam 2&¢ 1+sinx (142,/7sinx+q) (142v/g3sinx +¢3) (142/g5sinx +4°) - -

7T
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and another system of formulas which the resolution into simple fractions
yields:

2Kx 27 m< Vadte) . VPO+e) | VPO +e) +._>

6.) sinam —- = '
(6) sinam == = ¢ 1-2gcos2x+42 1-2¢%cos2x+¢° 1—2¢5cos2x+q'°

2Kx 27 x< Vil —q) VPEi-g) VP-9) )

7. — = - -
(7.) cosam 7 kK 1-2gcos2x+4q2 1-2¢%cos2x+¢° 1—2¢°cos2x+q'0

To these we add the following from the same source:

ot s ()R R )

K 1-2gcos2x +q2 1—2¢3cos2x+¢° ' 1—2¢g5cos2x+4q10
2K 1 t 1+¢°)t 1+¢°)t
) amZK¥ iy 2arctan 1TDEANT 5o AT A)ANK L I a0
T 1—g 1—g 1—g

In the last formula the upper sign is to be chosen, if one stops at a negative
term, the upper if one stops at a positive term.

36.

Let us consider the formulas (1.), (2.), (3.) in which especially the values of
the quantities we denoted by A, B, C are to be found. They are easily found
from formulas (3.), (1.) by putting x = 7:

whence it follows

1_2AK{(1+q2)(1+q4)(1+q6)~--}2_2AI<.C_2\/PAK
o L (Q+q A+ (Q+4°)---f  w B amB ’

whence it is

~ 2VKAK
==

B

But to find the value of A other artifices are to be used.
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Let us put ¢* = U: If x is changed into x + ZZK , U goes over into ,/gU,

sin am & into

sinam <2K+1K’) v
ksinam =X ZK"

But from formula (1.) we obtain:

2Kx _AK (U-U"\ [QA-g*U*)(1—q*U?)---] [1-g?U?)(1—q'U?)--]
smamn—n< i ) [(1—qu2)(1—-q3U?) - -] [(1—qu—2)(1—q3u—2)---]'
whence by changing x into x + 17er[<<
1 CAK (VU= VgTuTh (A= PuR) (- g0u?) - [(1-g?u (1 -U?---]
komam %~ i A=) —gie) ] [0 fu - g

having multiplied those by each other, because it is:

VIU—+/gtut 1 1-qu?

1-U-2 o \/ﬁ u-uv
it results:
2 4 24
1 — L (AK> or A= 71\/?/; hence & = \/EI
koya\n VKK T Vk

Hence it will be B = Nkf% =2y4q \/g . Therefore, it is:

2Kx 1 2¢qsinx(1—2¢%cos2x + q*)(1 — 2g* cos 2x + ¢°) (1 — 24° cos 2x 4 ¢*2) - - -

smarn7 = 7 (1— 29 cos2x + 32) (1 — 24% cos 2x + g°) (1 — 24° cos 2x + g10) - - -
2Kx k' 2¢/Gcosx(1+ 29 cos2x 4 g*) (1 + 2g* cos 2x + 4%) (1 + 24° cos 2x + g*2) - - -
cosam T =V (1 —2gcos2x + ¢2)(1 — 243 cos 2x + q°) (1 — 2¢° cos 2x + g10) - - -

(1 —2gcos2x + g%)(1 — 243 cos 2x + ¢°) (1 — 2¢° cos 2x + q10) - - -~
Having multlphed these equations by each other:

k' 1-q) - 1—¢)--\°
B =2V {<1+q2>(1+q4><1+q6>~-}

— (== a=¢)--°
c= _{(1+q)(1+q2)(1+q3)...}'
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it results:

2y _ [1-q)1-¢)A—¢q°)--]*
Vk (I+g)(1+g*)(1+4g%) - ]*

But according to Euler in Introductio (de Partitione Numerorum) it is:

— g2 — 44 —a% ...
00 P) = GG

1
1-9)(1-¢)(1-¢°)---

whence we obtain:

1) - -g)1-)1-q) ] = Z%k'.

Recalling the formula:

A= ”\4/7_{<1—q)<1—q3)(1_q5>... }z,

CVkK A=) (1 —gH) (1 —¢g°)---
it is:
'3
@) (-0 ) =T
whence also:
11/ 3
(3) [(1—q)(l—q2><1—q3><1—q4>---16:%.
One can add these formulas which easily follow:
3 5 7N 16 — 294
4) [+ +g)A+g)(1+4q") -] NP
(5) [(1+q2><1+q4><1+q6><1+q8>-~]6:4\/%7
6.) [1+9)1+g)A+g)A+4*---1° =2k,\/\;k/q-

103



From these one also concludes:

R (S 1LY A(ES /RN
® ¥ e o]
I R
w2 -l
L {zi;z;zi;ziswii }
) B (U)o )
) q°) -

(13.)

2VKK _ {(1— )( —qH) (1—¢° }
T (1+q)(1+q)(1+q) '

From formulas (7.), (8.) this non-obvious identity follows:

(14) (A=A =g )(1=7°) - P+169[(1+47) 1+ A +4%) - P = [1+ A +4°) (1 +4°) - .

37.

We have seen above, where the propert1es of the modular equations were
discussed, having changed k into to { that k goes over into k(K — iK’), K’ into
kK’; further that it is:

1/
sinam (ku, ﬂ;) = cos coam(u, k')

cosam (ku ik > = sin coam(u, k')

k
Aam( > Aamuk’)
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Having interchanged k and k’ from this it follows, if k' goes over into {; or k
into }(—75, that at the same time K goes over into k'K, K’ into k' (K’ — iK); further
that it is:

) , ik
sinam ( k'u, v) = cos coam U

, ik )
cosam | k'u, — | = sincoamu

AN
Aam(ku,k/> = Aamu’

whence also:

ik
am <k'u, ;c’) = g — coam .
But having changed K into k¥'K, K’ into k(K" — iK), g = S goes over into —g,
whence it vice versa follows:

Theorem I
Having changed g into —g we have:

ik K . 1
P' goes over into ?

K goesoverinto k'K, K' goesoverinto k'(K'—iK)

k  goes over into

. 2Kx . 2Kx
sinam ——  goes over into  cos coam ——
7T 7T
2Kx ) ) 2Kx
cosam —— goes over into  sincoam ——
7T 7T
2Kx . 1
Aam — goes over into  ————
T Aam =5
2Kx . T 2Kx
am —— goes over into —~ —coam ——;
7T 2 7T
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having changed q to —g and x to x — 7

2Kx . T 2Kx
am — goes over into —~ —am —
T 2 T
. 2Kx . 2Kx
sinam —— goes over into cosam —
T T
Kx . . 2Kx
cosam —— goes over into sinam ——
T T
2Kx . 1 2Kx
Aam — goes over into -~ Aam ——.
T k T

At last, let us investigate how the elliptic functions transform having changed
q either to g% or to V-

We saw above that the modulus A derived from the modulus k by means of
the first real transformation of n-th order enjoys the extraordinary property
that it is:

N K

N
therefore, having changed k into A, g = e goes over into g". The same,
proved by us on the transformations of odd order in general, was proved
already by Legendre on the transformation of second order long time ago, of

course, having put A = %;5 he proved that it is:

1+ K N K’
K, N=0Q+K)X, —=2-—

4 ( + ) 4 A K ’
whence we see, having changed k into %, that g goes over into g>. Hence
we vice versa obtain

A =

Theorem II.

. . . 1 . ’
Having changed g into 42, k goes over into %TIIE" K into %K, whence also:
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2VK 2

/ . .
k goes over into K 1+k goes over into T r
2K

k'K  goes overinto Vk'K 1—k goes over into oK
. k . (1+ vk)?
vk goes over into T+ % 1+k  goes over into B
kK 1+ VK')?
VEK goes over into o 1—k" goes over into W

From the inversion of this theorem one obtains another

Theorem II1.

Having changed g into /g, k goes over into %%’E, K into (1 + k)K, whence also:

_ 2
K goes over into 1=k 1+k goes over into (1;‘;{{]‘)

\/? k' (1 _ \/];)2

goes over into 1—k goes over into

1+k 1+k
2
kK goes over into 2VkK 1+k" goes over into Tk
2k
VKK goes over into k'K 1—k goes over into T4k

These three theorems, by means of which either it is possible to derive even
more formulas from others or confirm formulas found from other sources, are
confirmed by the expansions propounded in § 35 and § 36 in many ways and
they will have a very frequent use in the following.

38.

We want to denote the quantities into which, after having put q" instead of
q, k, k', K go over, by k), k()7 K1) so that k") is the modulus found by the
first real transformation of r-th order and k")’ its complement. Let us in the
equation:

107



2
\/,;{(1—07) (1-¢)(1-¢) (1—q7)---}
(1+4) 1+ 1 +¢°) (L+4q7) -
instead of g successively put g%, g, 4%, g'¢ etc. Multiplying all equations it
results:

2
\/k(z)/k(4)/k(8)/k(16)/ - { (1 - q2) (1 — 5]4) (1 — 5]6) (1 — 5]8) . } ;
but we found:

{(1—q2) (1—g*) (1-¢°) (1—q8)~-}2:2\/@<

(1+4%) (1+4%) (1+4¢°) (1+4°) - n
whence:
2K k@) f(4)(8)f(16) . . .
1 - . |
Because it is k(2 = %j{g, from (1.) it is:

T

2K\? 1 2V 2Vk@ 2vEWr ovEk®r
) K 14k 1+k@7 14k® 1 +k6)

whence having divided by (1.) we have:

7T

(2) 2K_ 2 ' 2 . 2 . 2
: T 14K 14+k@ 1+k@ 14 k@)

This formula is also obtained because the following hold:

7T 7T ' m
2K 2K®) 2

T 1+ k@)
2K@  2K(®) 2

T 7 1 + k@)
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2K(r)

whence, because as r increases to infinity the limit of the expression =—is 1,

having expanded the infinite product, (2.) results. Having put:

m =1, n =k

m = m;—n, n =+/nm
m! = m/;_n/, n! = 'm’
NN

it is:
o _2Vk
1+ K m’
(ay _ 2/ (2)k _ n"
1+ k@) m'
O AVACIL
1+ k@ m™"
whence:
2 . _mo 2 w2 _m
1+k  m'’ 14+k@  m!" 14+k@  m’
and hence:

2K m m/ m// m///
T

or while y denotes the common limit to which m(?), n(*) converge as p grows
to infinity:

2K 1

G) —=-

T K

These results are known from other sources.
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Let us now again in formula:

2 3 6 5 10y ...
AamZI;x:\/ﬁ(l%—chost%—q) (1+2¢°cos2x+4°) (1+2¢°cos2x+q")

(1—-2gcos2x+4?) (1—2¢%cos2x+4g°) (1—2¢°cos2x+ q10)---

instead of g successively put ¢%, 4%, 4%, etc.; further let:

() (4) (8)
S=Aam <2K x,k(2)> Aam <2K x,k(4)> Aam (2K x,k(8)>
T T T

Because having constructed the infinite product it is:

2VKK

7T

— VK@@ k@)rgae)y ...

we obtain:

o 2VKK (14247 cos2x +q*) (1+2q*cos2x+4°) (1424°cos2x+¢'2) -

m (1—2g%cos2x +q*) (1—2g*cos2x +¢8) (1—2¢°cos2x+q'?)---

But from the formulas:

2Kx 2 ygsinx(1—2q*cos2x +q*)(1 — 29" cos 2x +4°) (1 — 29°cos 2x +¢%2) - --

smam =~ = N (1 —2qcos2x +q?)(1 —24°cos2x + q°)(1 — 29° cos 2x + ¢'0) - - -
2Kx k' /g cos x(1+2q% cos 2x + g*) (1 + 24* cos 2x + %) (1 + 24° cos 2x + q'%) - - -
cosam — = 24/ — -
U k (1 —2gcos2x +¢2)(1 — 2¢% cos 2x + q°) (1 — 2¢° cos 2x + g10) - - -
we obtain:

Aam 2Kx _ 1 tan x(1 — 2% cos2x + ¢*) (1 — 2g* cos 2x + %) (1 — 2¢° cos 2x + ¢'2) - - -
7 VK (1+2gcos2x +g*)(1+24%cos2x + q8) (1 + 2¢° cos 2x + q12) - - -

whence this memorable formula results:

S -tanam%
(4.) tanx = —
Vi

110



To demonstrate the same by means of known formulas let us recall a formula
for the transformations of second order which Gauss exhibited in the treatise:
"Determinatio Attractionis” etc.:

oky (14 k®)) sinam (@,k@)
sinam = ’
T 1+ k() sinam (@,k(z))

which having for the sake of brevity put:

am <2K(r)x,k(y)> - (P(f), Aam <2K(r)x,k(r)> = A",
T s

it is exhibited as this:

. (1+ k@) sin ¢?
sin g = - ,
1+ k@ sin ¢
whence also:
cos P A)
Cos @ = 1+ k@ sin? (P(z)
_ @ gin2
Ap = 1-k s%n )
1+ k(2 sin? @2
_ (1+k@)tan ¢@
tang = AQ)

The last formula can also be represented this way:

tang tan ¢(?) 1

2K T 2k@ A7

T 7T

whence having successively put 2, g%, g8, - - - instead of g, having done which
k, K, @ go over into k(Z), k(4), k(S), cee K(z), K(4), K(S), cee (P(Z)’ 47(4)/ 4)(8), e,
we obtain:
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tanp®  tang® 1

2K®) 2K®) A®B)
7T T
tanp®  tang(® 1
2K T 2K09A(16)
T T

Now, the limit of the expression

tan (P(p) tanam <@,k(p))
2K(P) = 2K(p) ’
T T

as p grows to infinity, is:

tan x;

for, then it is k(¥) = 0, K(") = 7, am(u, k(P)) = u; hence having taken the
infinite product and having, as above, put S = ACIADAB) .. -, it results:

tang tanx
2%k g7

7T

which is the formula to be demonstrated.

From the formula:

S-tan ¢

2K
7T

tanx =

an elegant algorithm for the computation of indefinite elliptic integrals of the
first kind can be derived; and this by means of the easy to prove formula:

A \/ 2(A+K)
(1+K)(1+A)

For this aim, we state the following
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Theorem

Having put:

9
[
3 \/mm cos? ¢ + nnsin® ¢

\/mm cos? ¢ + nnsin® ¢ = A,

form the expressions:

MER o= N =N
m' +n' " 1971 " " m/m//(A/ + 1’1/)
= m mn' =n A=\ — A
. m' + A
" " T A” ”
- ;n =m" m'n" =n'"" A = \/m mm”(+ A—t =)

R

u denoting the common limit to which the quantities m(”), A(P), n?) as p
increases very rapidly converge, it will be:

AA'A" ...
mm'm! - - .
By the same methods we used in the preceding one also finds the value of the
infinite product:

tan ud® = -tan ¢.

201 2 20 20
Vi Vi@ Vi@ VEkB)

For this aim, recall the formulas from § 36 (4.), (5.):

G+ 0+ 0+ )10 =L
(@) ) o=
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the latter of which results from the first having successively put ¢%, %, ¢° etc.
instead of g and taken the infinite product, whence we obtain:

ko 2YP 2t 2
WK G VKK VO k@) kB
But we already found (1.):

2K \/ K2/ @IE)
L3 K ’
whence
(5.) vk 2K 294 297 24t 2V

S o vk VKD Vi V@)
These things might seem not to be connected to our actual subject; but because
they are elegant and very helpful to understand the nature of the propounded
expansion, it is useful to have explained them.

2.1 EXPANSION OF ELLIPTIC FUNCTIONS INTO SERIES OF SINES OR
COSINES OF MULTIPLES OF THE ARGUMENT

39.
From the formulas given above:
2y — 247 4 (1 - 24 8) (1 — 246 12y,
(1) sinam 2% = A g (1-2¢7cos2x+¢%) (1 —2g* cos2x +4°) (1 - 24 cos2x +¢1%)
& vk (1 —2gcos2x +q2) (1—2¢5cos2x +q°) (1 —24°cos2x +q0) - -
(2.) cosam& _ 2\4/7‘/]? (1 + 242 cos 2x + g*) (1 +24* cos 2x + ¢%) (1 +24¢° cos 2x + ¢'2) - - -
. Tk (1 —2gcos2x +¢2) (1 —24%cos2x +g°) (1 — 245 cos2x + ¢10) - - -
(3.) AamZKJ - Vi (1—|—2qcos2x—|—q§) (1+2qzcos2x+q2) (1+2q5cos2x+q12)-“
d (1 —2gcos2x +g2) (1 —24°cos2x + q°) (1 — 245 cos 2x + ¢10) - - -
And

() 1—sinam2&* [T —sinx (1 -2gsinx +¢%) (1 —2¢*sinx +¢*) (1 —2¢°sinx +¢°) - - -
A\ 1+sinam 22V 1+sinx (1+2gsinx +42) (1+2¢%sinx +¢*) (1 +2¢%sinx +¢°) - - -

T

(5 | Loksinam 22 _ (1-2y/gsinx +q) (1-2y/gsinx +¢°) (1= 2y/Fsinx +g) -
. 1+ksmam2K7x B (1+2,/gsinx +q) (1+2v/g3sinx +¢3) (1+2\/q>551nx+q5)...'
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having expanded the logarithms of the single products on the one side of the
equations, after some obvious reductions, these follow:

(6.) Insinam 21<7x = { 2V ; } + qucis qzx 226221 CES;;C éfé cisqggc

(7.) Incos am 8% { 24/7 [ oS x} 211 cos qu n 22?21 C_isqi; 23[231 c:)sqggc

ek e Y e

and

9.) ln\/ 1 +Sif}am%’i —In \/m+ 4gsinx  4¢°sin3x  4¢°sin5x
1+ —sinam =% 1—sinx 1—-g 31—¢%) ' 5(1—¢9)

(10) In \/1+ksmam 2Kx _ 4/qsinx 4,/q3sin 3x N 4y/q°sin5x

1 — ksinam 2X* 1—9¢q 3(1—¢°)

5(1—-¢°)

Having differentiated these formulas, if we note the following easy to prove

differential formulas:

dIlnsinam &% ZK" 2k’ K cosam ZK—"

dx T coscoam &
_ dInsinam 2 2Kx _ 2K sinam & 2K 1  4Kx
_ = — -W:—-tanfam—
dx T sin coam 2&* 2
dinAam 22 o2 2Kx 2Kx
— = - sinam —— sin coam ——
dx T 7T
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and

1+sinam 2Kx
dlin, | ———%

1—sinam¥ - 2K 1
dx 7 sincoam 2%
dl 1+ksinam2K7X
M\ Tksinam 2% kK 2Kx
= - sin coam ——
dx T s
we find the following:
(11) 2k'K  cosam 2 _Cotx_4qsin2x_4qzsin4x_4q3sin6x o
' T coscoam 2Kx T+g 1+q2 1+¢°
(12) 2K sinam 2K7x — tanx + 4gsin2x  4g°sindx  4q°sin6x
7 7 sincoam 2Kx 1—9q 1+q° 1—¢°
(13) 2k’K . 2Kx . 2Kx _ 8gsin2x 84°sin6x  84°sin10x
: sinam — = sin coa R = i
(14) 2K 1 +4qcosx_4q3cos3x_4q5c055x_“.
7 msincoam 2% cosx  1-gq 1—¢° 1-¢
(15.) 2kK o 2K _4\/ﬁcosx_4\/q3cos3x+4\/q5c055x_ '
: —— 'sincoam —= = =4 T -

If in these formulas one puts % — x instead of x, one finds:

2k'K 2K 4g%sin2x  4g%sindx  4g3sin6
(16.) k 'coscoamZK;T ~ tany — g sin 2x q s1n2x 4 sm3x
T cosam 28X 1+¢g 1+¢g 1+9q
2K  sincoam 2Xx 40%sin2x  4g°sindx  44°sin6
(17) 2K & 21<;T _ cotx + q-sin2x  4q sm2x q smsx_”'
T sinam =% 1—¢q 1+g 1—9q
2K 1 4gsinx  4¢°sin3x  4g°sin5x
(18.) . 2Kx aina 1 _ _ 3 — 5
7rsinam <= sin x 1—¢g 1—¢g 1—g
2kK 2K 4 sinx 4./g3sin3 4./g%sin5
(19.) — -sinam X _ 2V SH; T AV 51r51 a
T 1—gq 1—¢q 1—g
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Formula (13.), by putting 7 — x instead of x, remains unchanged.

By changing g into —g, from theorem I. § 37 the formulas (11.), (12.) go
over into (17.), (16.); (13.) remains unchanged; from the formulas (14.), (15.),
(18.), (19.) we obtain:

2k'K 1 4gcosx  4q°cos3x  4g° cos5x
(20.) %y = - 3 5
T cosam =% CcOs X 1+4+4g 1449 1+4+¢g
(21) 2kK cosam 2Kx ~_ 4\/fcosx 4\/q3cos3x  4./q°cosbx
s 1+¢ 1448 1445
(22) 2kK'K 1 4gsinx  4¢’sin3x  4q°sinbx
' ﬂcoscoamz%x ~ sinx 1+g 1+4° 1445
2kK 2K 4 inx 4,/g3sin3 4,/g°sin5
(23.) —— - coscoam x_ 4/gsinxy_ 4vg 51r31 AL SH; o
T 1+g 1+¢q 1+¢q

The formulas (19.), (21.), using known expansions, can also easily be derived
from those we gave in § 35 (6.), (7.):

2Kx 27 inx( Vi+e) VP +%) N VP (1+9°)

smam = TRk 1—2gcosx+q>  1—2¢3cos2x+q°  1—2¢5cos2x+q0
2K 1— /33(1 — 53 /75(1 _ -5

cosam—xzz—ncosx \/ﬂ q) - q(l q) + q(l q) —
U kK 1—2gcosx+¢*> 1—24%cos2x+4g® 1—24°cos2x + g0

From formula (9.) § 35:

2K 1 t 1+t 14+t
T 1—¢g 1—9¢q 1—g
it also follows:
2Kx 2gsin2x  2g%sindx  2g°sin6x

(@h) am = =Y ST T T3t

For, the same, taking into account the ambiguous sign, can be represented
this way:
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3 5
+x+2arctanw — Zarctanw +2arctanw —
1—9q 1—¢° 1—¢°
—2x + 2x —2x + -
if for the sake of brevity one puts t = tan x. But it is:
arctan w — x = arctan (L+q)t— (1 q)t = arctan 2qt = arctan M,
1—9¢g 1—g+ (1+qg)tt 14 tt—q(1—tt) 1 —gcos2x
whence it follows:
2K in 2 3sin2 5sin?2
am—x = x+2arctanM —2arctanw+2arctanm — e,
T 1—gcos2x 1 —g3cos2x 1 —¢°cos2x
or because it is:
g sin 2x _ g*sindx  ¢%sin6x
tan——— = 2 .
arcanl—qcost gsin2x + > 3 ,

it is:
2Kx 2gsin2x  2¢?sin4x  2¢°sin6x
am—— =X 4+,
T 1442  2(1+4*)  3(1+4°)

which is formula (24.). From its differentiation this equation results:

4gcos2x  4q*cosdx  4q°cos6x
1+ qZ 1+ q4 1+ q6

2K 2Kx
m— —=

25. — A 1
(25.) - a +

whence having put —g instead of g or 7 — x instead of x it also is:

(26.) 2k'K 1 4gcos2x  4g°cosdx B 443 cos 6x
' A am 28 1+¢2 1+q* 1+q°
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40.

From the propounded formulas, by putting x = 0 or substituting other values,
the following are easily found:

4q? 4q° 44"
1. Ink =In4,/g— — —
(1) " n4vg 1+q 20+¢) 30+  A1+qh
o 84 8¢° 84° 847
N A (D R (e DR
2K 4q 4q° 4q° 4q”
3. In— =
(3) g 1+9¢g +3(1+q3)+5(1+q5) Jr7(1—q7)+
And
2K _ 4 7 ¢
_ 4q 4’ 4g°
1+1+qz +1+q4 +1+q6 "
5 XK _ M WP WE
' T 1—g 1—¢8 1—q
_ 4./q 4\F 4f L
1+¢q 1+q 1+q
2KK 4q 4q° 4q°
(6. T _1_1+q 1+¢3 T+
4 4g? 4q°
P B T
1+g¢ 1+q 1+q
) 2\/I?K_1_ 4q? N 44° 49" L
' T 1+ g2 1+¢g° 1+ g%
_ 4q° 4q* 4q°
_1_1+q4 +1+q8 _1+q12 +
4KK 84 1642 24g°
) =l+1, tiig tig *
8q 84 87°

A—qf U+ -9
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4kkKK 164 484° 804°

(9.) o g tiop it
_ 16q(+4)  166°(1+4°)  164°(1+7q")
B (1-¢%)? (1-q°)2 (1—4'%)
AKKKK 8 , 164> 244
(10.) e W B i
1
a2 "2 Arer "
ay  HEKK o 4va 12y@ 20@
) T 1+q 1+¢° 1+¢°
_ 40— 4/P0-¢) 4/PE(-¢)
(1+4) (1+¢°)? (1+4°)
4KKK 8> | logt  244°
(12) T _1_1+q2+1+q4_1+q6+
1
T2 Tra?  ArgR
4kKK 4 12/ 20,/
(13) —— = v, \/Z+ \/ZJF"'
T 1-q 1—9q 1—9q
_ HA(+g) 4VP(+e) 4V +e)
(1—q)? (1-¢°)?2 (1—¢°)?

We represented formulas (4.)- (13.) in two ways; but the one representation
easily follows from the other, if the single denominators are expanded into
series. Further, we add, according to the theorems propounded in § 37, that
from two of their total number, namely (4.) and (8.), one can derive them all.
For, by putting /g instead of g, because K goes over into (1 + k)K, subtracting
the result from formula (4.) (5.) results; secondly, by putting —q instead of g
K goes over into k'K, whence from the formulas (4.), (8.) formulas (6.), (10.)
result; (5.) remains unchanged. By putting g? instead g, k'K goes over into
V'K, whence from (6.), (10.) then (7.), (12.) follow. From (8.), (10.), because
kk+Kk'k' =1, (9.) results. By putting ,/7 instead of g, kK goes over into 2v/kK,
whence (13.) results from (9.). By putting —¢q instead of g, kKK goes over into
ikk’KK, whence (11.) follows from (13.). However, series of such a kind do
not seem to exist for the modulus or the complement. Having expanded the
propounded formulas into a power series in 4 we obtain:
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(14)  Ink :ln4\f—4q+6q2—%q3+3q4—%q5+8q6 37q +§q8 592q +%q10

5
B T S S R e T
(15.) Ink —8q+3q+5q+7q+ 9q+11q +13q +15q + -

K 165 25 166 32 20 20,
(16.) lnn =4q 4q+3q 4q+5q 3q+7q 4q+9q 51 +
(17.) % =1+4q+49> +4q" +8¢° +49° +4q° + 8'° + 8¢ + 44'° + 87'7 + 49" + - - -
2kK
(18.) — :4\/§+8\/$+4\/$+8\/q13+8\/q17+12\/q25+8\/q29+8\/q37+---
2k'K
(19.) I; =1—4q+4q° +4q" — 89" +49° —4q” + 87" — 84" + 44" — 87" + 44" + - --
/
(20) 2\/7-ISK — 1 dgg2 + 4g* + 4q5 — 8010 + 46 — 48 4 850 — 8% 1 4 —
4KK
(1) — =1+ 8q +24q% + 32¢° + 244" + 487 + 964° + 64q” +244° + - - -
4kkKK 3 5 7 9 11 13 15
(22) ——— =169+ 647" + 960" + 1287 +208¢° +192q'" +224q" +3849"° + - --
11/
(23.) 4; 71; = 1—8q +24q% — 324° + 244" — 484° +964° — 64q” 424" — - -
4kk'KK
(24, KK = 47— 16\/73 + 24,7 — 32,7 +52,/g° — 48, /g1 + 56/q5 -
4k’KI<
(25) —— =1— 8¢ +24q* — 32¢° + 244° — 48¢'° + 964" — 644" 4 24¢™° — 104¢"8 + - -

(26.) ‘”:;K = 4+ 16\/77 + 24,/ +32,/7 +52,/° + 48\ /g1 + 56,/ + -

To understand the law and the nature of these series better, we will denote
them by a summation sign }_ prefixed to its general term. Let us put that p is
an odd number and ¢(p) the sum of the factors of p. Then it is:

_ . q)(p) p_3qp 3 §8p_3 l6p _ ..
(27.)  Ink =In4,/4q 427 {q ; 4q g1" — 161
(28.) —Ink' = szg”(pp)qp

(29.) ln% :42(”55’){qr’_qZP_q4v_q8p_q16p_...}_
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Further, let m be an odd number whose prime factors are all of the form 4a — 1, let
n be an odd number whose prime factors all have the form 4a + 1, let (n) be the
number of factors of n and finally, let | be any arbitrary number from 0 to cc:
We obtain:

(30.) % =1+44Y p(n)gm
G ZE = ALy
(33.) 2\/5K =1-4Y ()" +4Y p(n)g?

while p again denotes an odd number, ¢(p) the sum of factors of p, it is:

4KK
(34.) — =1+ 8Y o(p)lg” +34°" + 34" +3¢% +3¢"% + - - -]
4kkKK
= P
(35) — . 16 ¢(p)q
4K KKK
(36) ———=1+8) ¢(p)[—4"+347 +3¢" + 3¢ + 39 + - --]
4kK' KK -
(87) ——— = 4 (D7 ep)V
4k'KK 2p 4p 8p 16p 32p
(38) ——= =1+8) o(p)[—q7 +34"7 +347" +3q7 +37 + -]
4kKK
(39.) g 4Y 9(p)/gP-

Let us demonstrate formula (27.). We found (1.):

49 4> 49
14+q9 2(14+4%) 3(1+4*%

which we want to put = In4,/7 + 4y A¥g*. Let x be an odd number

Ink =1In4,/q — 4,

p = mm’, from the general term _m(lqij:q'”) %ﬂ results, whence it is clear that
it will be A(P) = —@. Now, let x be an even number = 2! p= 2lmm’: from
the terms
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2m 4m 2!

m 8m
—q q q q q
m(1+g™m) * 2m(1 + g2m) * 4m(1+ g*m) * +8711(1 + q%m) e 2lm (1 4 g2'm)

this equation results:

cf v 1o 1 11 3¢
m {1 2 4 8 21 Vo [ T oy
whence A®) = 3‘51(5 ) what yields the propounded formula.

Let us demonstrate formula (30.). We found (4.):

4 3 5
q
Let B™) be the number of factors of x which have the form 4m + 1, C™*) the
number of factors which have the form 4m -+ 3, it easily seen that Al =
B®) — C), Let x = 2'nn’ such that n is an odd number whose prime factors
all have the form 4m + 1, n’ an odd number whose prime factors all have
the form 4m — 1, it is easily proved, if n’ is not a square number, that it

will always be B®) — C() = 0, and if n’ is square number, that it will be
B®) — C) = (n), whence formula (30.) follows:

Finally, let us prove (34.). We found (8.):

K4
T ~ 1-g 1-—9q

— .. :14_4214(96)(79{

2 3 4
4KK 1+ 8q 16g 24q 32q

— = (%) g
p— 1_q+1+q2+1_q3+1+q4+ 1+8) AMg".

While x denotes an odd number it easily understood that it will be A®) =
@(x); but if x is an even number = 2! p, p denoting an odd number, if m is a
factor of p, from the terms

m 2 2m 4 4m 8 8m 21 2lm
g Ty S T O 2T
1—¢q 14+g4m 145" 14 g™ 1+4¢%m

the equation 8mg* {1 —2—4—8— ... =271 4+ 2!} = 24mg* results, whence
in this case A®) = 3¢(p) what yields the propounded formula. The remaining
formulas are proven in a similar way or are deduced from these.

2Kx
T

2Kx 1
,Aam T 7 cosam

The expressions cosam a7, having expanded them into a
T
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2
e : 1 (2K\2 _ 1 (2kK 1 (2K)2
power series in x, have the expressions —3 (2%)", —3 (7> ,+3(5) asa

coefficient of x2, respectively, whence from the formulas (21.), (25.), (20.) of
the preceding paragraph we see the following equations to result:

1+43 1+q 1+q
VIA+60+4%)  VP(1+6° +4°) V(1 +6° +4%)

(40.) k(sz - 4{1+q VG BVE VT | }

|
o~

(1-¢°) (1-¢°)? (1—¢°)°

q 94° N 25¢° B 4947 -

1+q 144> 144 1+¢

q(1—6g°+q*) ¢*(1—64"+¢°)  ¢°(1-64°+q")
(1+4¢%)3 (1+4%)?° (1+¢%)°

q 4q° 9¢° | leq*t }

+ ¢? 1+q4+1+q6+1+q8

(I+q) ¢O+g) ¢£O+e)

1—g)p (A-¢)0  (1-¢°)

(41) ¥ (25)3 — 144

(42) Kk (27IT<>3: 16

From these, having put —g instead of g, we obtain:

. (2K Vi 9P 25\f 49\F
(43.) kkk<n> = 4{1_q T 1_q T }

. (2K o q9 9 25¢° 497 |
(44.) kk(ﬂ) =1 4{1_q 1_q3+1_q5 1_q7+

; 2K - q 4q? 9¢° _ 49g*
(45.) kkk<n> = 16{1_1_[12 1—|—q4+1—+q6 1—|—q8+ .

Having added formulas (40.), (42.), we obtain (% ) having subtracted (40.)

3 e\ 3
from (43.), (41.) and (45.), we obtain (2]‘7K> , (%) , from which, having
7\ 3
written /g, q instead of g, <4\[K ) , (@) results, respectively; from
N\ 3
(#) having put —g instead of g one obtains (%) .

At last, having put k = sin ¢, let us expand ¢ = arcsin k. We saw, having put
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/9 instead of g, that k’ goes over into ﬁ’z ; let us again put —¢q instead of ¢, k
then goes over into }775 or into i tan ¢ such that having put i, /7 instead of g the

/.
% is changed to:

1
1 1—itand
—Cn [ /) =
2in<1+itan19> 0

8[]3 N 8q5 N 8[]7
3(1—¢%)  5(1—4)  7(1—q')

expression —

Hence from formula (2.):

8q

—Ink' =
1—¢?

+

we find:

R N B . Y
(46.) ¢ = arcsink = T+q 30+ + 51+¢°) 7(1+q)

_|_.../

which is easily transformed into this one:

¢ — 3 5 74
(47.) arctan /q — arctan y/¢° + arctan y/¢°> — arctan /g’ + ,

which is to be counted among the most elegant formulas.

41.

Let us multiply the equation exhibited above:

4 3 3 . 5 .
Zk—Ksinam 2Ky V/gsinx n 4./q°sin3x  4,/g°sin5x L
T 1—¢q 1—¢83 1—¢°

by itself. Having substituted the expression

cos(m —n)x — cos(m +n)x

for 2 sinmx sinnx everywhere the square takes on the following form:

2kK\ 2 2K
(7_[) sin? am% = A+ A'cos2x + A" cosdx + A" cosbx + - - -
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It is found:

3 5
O | 84

A-qr " a-gr U-gr "

Further, it is:

A =16B" —gc" = g[2B" — "],

if it is put:
n+1 n+3 n+5
B = q - d + g + etc. to infinit
I—g)(1—¢g ) " A=) 1 —g3) "~ (1—g5)(1— g2 7) y
C(”) — qn qn qn I qn

A-—qU-@ ) AP 1-—"3) (A (1—g7)

Now, because it is:

(1—g>1(1—q)

qm-i-n _ qn qm B q2n+m
(1 _ qm)(l _ q2m+n) 1— an 1— qm 1— q2n+m

it is:

n 3 5
q q q q
1—q2”{1—q+1—v/3+1—q5+ }

qn q2n+1 q2n+3 q2n+5
g {1_q2n+1 +1_q2n+3+1_q2n+5 T

B

or having cleared the terms which cancel each other:

3 2n—1
m_ 9" q q U S
B 1_q2n{1_q+1_q3+ +1_q2n—1 :

Further, it is:

n

n m 2n—m
q _ 14 q q
1—gm)(1—g?m)  1—g* {1—01’” Tiogpm H}'
whence:
n n 3 2n—1
(_ 1 29 9 . 4 ...,
C 1_q2n+1_q2n 1_q+1_q3+ +1_q2n—1 '
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Hence finally this equation results:

n

—8ng

A = g[2B" — cM] = T

whence now:

2kK \ 2 2K 5 20 cos 4
(1) (7_[> Sinzamnx:A_S{qcos X | 2qcos x+

In like manner from (1.) it is also found:

34° cos 6x
1—¢? 1—4* 1—q°

34° cos 6x
1—g? 1—qg* 1—gq°

? 2
(2.) <ZI;K> COSZam¥ —B+8 {qCOSZX I 2q“ cos4x n

if:

_ q 7 7
A‘gﬁrwﬁ+u—fﬁwrw%+m}
3

B q q °
B‘S{u+wf*a+¢f*u+ff% }

Applying a known theorem of integral calculus, if

@(x) = A+ A cos2x + A” cosdx + A" cos6x + - -

the constant or first term is found to be:

%
A= /(p(x)dx,
0

SRS

whence in this case we obtain:

s

2 [2kK\? | 2K
A= — <> /sin2 am —xdx
T / T

s

2 [2kK\? | 2K
B = — <> /0052 am —xdx.
7T / T
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Following Legendre, let us put:

/ dpA (¢ / dxA? am 2K
7'[

it will be:

2K 2K 2K 2E!

A= o a2
7T 7T 7T 7T

5 2K 2F! 26K\ 2
T T ’

Hence, because having changed g into —g A goes over into —¢, K into k'K, it
follows that at the same time E! goes over into %I

Finally, let us add that from formula (1.) it follows:

2K q 23q2 33q3 43q4
(3.) kk<n> _16{1—q2+1—q4+1—q6+1—q8+”'

:16{q(1+4q+q2) q3(1+4q3+q6)+q5(1+4q5+q1°)+m}
(1—q)* (1—¢%)* (1-49°)

whence having changed g to —q it also is:

2K 232 333 434
2 _ g <1 |
(4.) kk(n) 16{1_q2 1—q4+1—q6 1—q8+ }

_ 16{q(1—4q+q2> P40 +4°) | P°(1—44° +q") +}
(1+49)* (1+¢°)* (1+¢°)

Having subtracted formula (4.) from (3.) this expression results:

2kK 4 qZ 23q4 33q6 43q8

_ase [P H44Y) (1 +49°+47)  qP(1+490 +¢%)
(1—g2)* (1—q%)* (1-4") '

which one obtains also from (3.) having changed g into ¢°.
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42.

Using a similar method as formula (1.) of the preceding § was found we could
have investigated, how to expand the expression

(%)
7T
Sll’l2 am ZKJ

into a series, if formula (18.) in § 39 is squared. This is, however, achieved
more easily starting from (1.) of § 41 having considered the following.

For, having differentiated the formula:

dIn sin am 2K* ZKX 2K \/1 — (1 +kk) sin? am 2Kx ZKX + kk sin* am2K7x

dx 7T sin am Zﬁ

one more time and having done the reductions, we obtain:

dx? T 7 sin?am 2

d21 2Kx 2
(1) nsinam =% _ <2K> K sin? am 2Kx _ 1

But in § 39 (6.) we already found:

2Kx 24 . gcos2x = g*cosdx  q°cos6x
lnsmam7—1 (\/%>+lnsmx+2{ 114 +2(1+q2)+3(1+q3)+-“ ,

whence it is:

d* Insinam 2% 1 { qcos2x  2q°cos4x 3q°coséx }

=—— +
dx? sin” x l+q 1+ ¢ 1+4°

Further, it is § 41 (1.):

2kK , _2Kx 2K 2K 2K 2F! gcos2x  2g*>cosdx  3q°cos6x
— ] sinfam—= —+—— —-——38 >+ 7} ety
T T TT 1—9g 1—g 1—¢q

whence, because from formula (1.) it is:
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sin“ am —

(275)2 _(ZkK)2 , _2Kx d*Insinam 2«

2 2Kx -

sin® am =% 7T dx?

what we are lookmg for results, namely:

2) ()" 2K 2K 2K 2E' 1 fqeos2x, 2q*cosdx | 3’ cos6x
’ smzam&_ T o w 7w sin’x 1—¢? 1—4* 1—q°
Having changed g to —q at the same time as x was changed to 7 — x, whence
K goes over into k'K, E! into k’ (§ 41), sinam 2% into cosam 2&%, from (2.)
this expression results:
2wk \?
3 <T> 2K'K 2_% E+ 1 48 q*cos2x  2q*cosdx  3q°cos6x
7 cos?am 2Kx "\ 7 T T cos?x 1—¢? 1—¢* 1—¢g°
To these I add these formulas following directly from § 41. (1.):
2K\ ? 2Kx 2K 2F!' 2x | 2¢*cosdx | 3q°cos6
() > A2 am 2K¥ :.+8{qcoszx+ qcos4x qcos6x+ }
T T 1—9g 1—9¢q 1—gq
(5. 2K'K 1 _ 2K 2E'  {gcos2x 2q°cosdx  3q°coséx
' m ) AamZ o7 1— g2 1— gt 1—¢6

of which (5.) follows from (4.) having changed x into 5 — x or q into —q.

Having put y = sinam 2&* /(1 —2)(1 — k2y2) = R it is:
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dy 2K

dx (7‘() R
2 2

Z;g =— (f) y(1+ K2 — 2k%2)

&y 2K\ ° 2 2.2
4 4

‘jlxz = (zf) y(1 4+ 14k% + k* — 2063 (1 + K?)y? + 24k*y*)
5 5

sz = (f) (1 + 14k* + k* — 60k*(1 + k*)y* + 120k*y*)R

etc. etc.,
whence:

, 2Kx 2Kx 14+ k> (21<x)3 1+ 14k2 + Kk (21<x)5
Yy = sinam p- = — e

T 23 \n« 2-3-4-5 T
and hence:
(B 1 1R (K 1R 2K
sinzam%_x2 3 s 15 T !

after having compared which formula to (2.) it is found:

14k /2K\?> 1 [2K\?> 2K 2FE! 2 24 340
R e S+ q4+ q6+---},
3 T 3 T T 7 1—g 1—gq 1—g

or

2 gt 3¢5 4g 1+ (%) (2— k) —32% . 28
g g ¢ 4 1+ (R)@-k) 3% -5

(6. 1—q2+1—q4+1—q6 1—¢8 2-3-4

Further, it is:
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~ 15

1—k2—|—k4 <2K>4 1 +16{ qz 235]4 335]6 435]8 }

15 T 1—q2+1—q4+1—q6+1—q8+

or because itis 15 =223 — 1:

2K 4 23,2 434 6340 83,8
a2 Ay (2R L _ q q q ...
(1 k+k)<7_[> 1+2 16{1—q2+1—q4+1—q6+1—q8+ }

2 3.4 3,6 3.8
1. 1 2°q 3°q il M
1 16{1—q2+1—q4+1—q6+1—q8+ :

From this formula subtract the following (3.) of § 41:

2K 4 232 333 434
2 (AR q q q q
k<7r> _16{1—q2+1—q4+1—q6+1—q8+ }

the residue is:

2% K 4 q 235]2 33q3 43q4
7) ( ﬂ) _1_16{1—q_1—q2+1—q3_1—q4+'”}'

whence having changed g to —g it also is:

2K 4 q 23(12 33q3 43(14
(8) (ﬂ) _1+16{1+q+1—q2+1+q3+1—q4+“'}’

which formulas were more difficult to find. If one combines them with those
we found above, one has now expanded the first four powers of 2, 2"7K into a
beautiful series.

2.2 GENERAL FORMULAS FOR THE EXPANSION OF THE FUNCTIONS
sinam 2K* L~ INTO A SERIES OF SINES AND COSINES OF

T 7 sin” am
MULTIPLES OF x
43,

Having found the expansions of the functions
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__ 2Kx ., _ 2Kx 1 1
sinam ——, sin”am , - ,
T —Zﬁx sinZam —zﬁx

this automatically raises the question about the expansion of the powers of

7 .
T Sinam

2Kx 1

sinam , -
T sinam

K

7T
There is an easy way via analytic geometry following which having found the
expansion of sin x, cos x you can proceed to the expansion of the expressions
cos" x, sin”" x; this is certainly achieved by means of the known formulas
expressing sin” x and cos” x as linear combinations of sines and cosines of
multiples of x. But since in the theory of elliptic function such an auxiliary
tool does not exist, one will have to use another way we will explain in the
following.

Having differentiated the formula, which is obvious from the elements,:

dsin” amu
du

one more time this expression results:

= nsin""tam u\/l — (1 +K2) sin? am u + k2 sin* am u

d2 s N
1. sy amu n(n—1)sin" 2amu — n?(1+k?) sin” amu + n(n + 1)k? sin*? am u.
( du?
Having successively putn = 1,3,5,7---,n = 2,4,6,8, - - - from this then form

two series of equations:

I.
d? sinam u 20 2 3
— = —1(1+k%) sinamu 4+ 2k“sin”’amu
d? sin® am u . 2 3 2 5
— =6sinamu —9(1+k%) sin’amu + 12k” sin” am u
d? sin® am u .3 2\ i 5 2 i7
—a = 20sin” am u — 25(1 + k”) sin” am u + 30k” sin” am u
d? sin” am u .5 2\ .7 2 i9
g = 42sin” amu — 49(1 + k7) sin” am u + 56k~ sin” am u

etc. etc.
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II.

d2 102

%zZ —4(1+Kk*) sinamu + 6k*sin*amu

d?sin* am u .5 2\ 4 2 6

— Qg = 12sin“amu — 16(1 + k”) sin* am u + 20k” sin® am u
d? sin® am u .4 2\ .6 2.8

— gz = 30sin*am u — 36(1 + k7) sin® am u + 42k” sin® am u
d? sin® am u 6 2\ .8 2 .10

— = 56sin” am u — 64(1 + k°) sin® am u + 72k sin"” am u

etc. etc.

From equations L, II. having put ITn =1-2-3-- - n one successively finds:

I. a.

d% sinam u
du?
d*sinamu
du*

I12 - kK*sin®amu = + (1+Kk*)sinamu

sinam u
du?
d® sinam u d*sinam u
ik 142y 22—
G +35(1+k%) e

+ 45(5 + 3k* + 3k* + 5k°) sinam u

14 - k*sin’ amu = +10(1 + &%) +3(3 4 2k* + 3k*) sinam u

d?sinam u

116 - k° sin” am u =
6 sin’ am u I

+7(37 + 38k* + 37k*)

A8 sinam u
du8

d® sinam u
du®

+4(3229 + 3315k? + 3315k* + 3229k°)

d*sinamu

I18 - k8 sin? =
SIN" amu du4

+ 84(1 +K?) + 42 (47 + 58Kk + 47k*)

d? sinam u
du?
+ 315(35 + 20k* + 18k* -+ 20k® + 35k®) sinam u

etc. etc.
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II. a

2 cin2
I13 - k*sin*famu = dSIZIEWI +4(1+K?*)sinamu — 2
4 502 2 cin2
I15 - k*sin® amu = dSl;ufm” +20(1+ kz)ds'lzl‘L;m‘ +8(8 + 7K2 + 8K4) sin? am u — 32(1 + k2)
46 si 2 d4 si 2 d2 si 2
117K sin® amu = =0 S0 4 56(1 4 k) T 4 112(7 + 8K + 7k T2
+ 128(18 + 15k* + 15k* + 18k®) sin® am u — 48(24 + 23k* + 24k*)
etc. etc.
So we see that we can put in general:
(2.) I1(2n) - K*" sin®" ™ am u
d*" sinam u (1) d>"2ginamu (2) d>"4sinamu (n) .
- du2n + An du2n_2 + Aﬂ du2”74 tet + An Ssinamiu
(3. I1(2n — 1) - k"2 sin®" am u
4?2 sin®>am u d?"~*sin% am u d*"~®sin? am u 1) .
- dl/lzn_z B}Sl) du2n74 BTSZ) duzn—G +et Bigln 1) Sln2 amu + Br(ln)/

where A{"™, B{" denote polynomial functions of k? of m—th order except for

B,(qn) which is of (n — 2)—th order. Further, from the general formula from
which we started:

d?sin am u

I =n(n—1)sin" 2amu —n?(1+k*)sin" amu+ n(n+1)k*sin" 2 amu

it is clear that it will be:

+ (21 —22(1+K)B" Y — (2n —3)%(2n — 2)(2n — 4)K*B",”

n— 7

in which formulas, if m > 1, one has to put A§[”) =0, B,(qm) =0.

. . TR . . 1 .
Having changed u into u + iK', since sinam u goes over into ;5. one will
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1 . . .
be able to put ;. instead of sinam u in the propounded formulas, whence

the following formulas result:

I2 d? 1 1
sinamu  du?sinamu sinam u
I'13 d? 1 1
— s =~ A1+ — — 2k?
sinfamu  du?sin’amu ( ) sin am u
114 d* 1 d2 1 3(3 + 2k* + 3k*
?:74.7 +1O(1+k2)72 " + ( " )
sinPamu  du*sinamu du? sinamu sinamu
I15 d* 1 d? 1 8(8 + 7k* + 8k*)
o 42014k + — 32k*(1 + K2
sinfamu  du*sin?amu ( ) du? sin® am u sin® am u ( )
etc. etc,,
and in general
I1(2n)
6. _—
(6. sin? ! amu
N S a1 a1
du?" sinam u " du2r—2sinamu " du2r—4 ginamu " sinamu
I1(2n—1)
(7.) ——
sin“*am u
d2n72 1 d2n74 1 d2n76 1 1
= T2 2 +B, 4 2 B 716 w2 +"‘+Br(zn)f
du?"=2 sin“ amu du?"* sin“ amu du?"=°sin* amu sin” am u
44,
Because it was found in the preceding §, if one puts u = 22 that the
expressions
. 2Kx 1
sin” am , - e
T sin” am =
can be expressed as a linear combination of these:
sin am —— sin?am 2Kx 1 1
m’ T’ sinam%/ sinzam%

and its differentials taken with respect to the argument u or x, from their
expansion into a series of sines and cosines of multiples of the argument x
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the corresponding expansions immediately follow.

This way we obtain:

I
From the formula:
%—Ksinam& 4 qsmx V4 sm3x V4 sm5x+
T T 1—g 1—¢8 1—¢°

we obtain the following:

2 <2kK> sin® am ZK—X
T T

(ZkK ) 3 2Kx
2 — ) sinam —
7T 7T

\/ﬁsinx

:4{(1+k2) (25>2_12} =

= 4{ (3 + 2k% + 3k%) (2715)4 —12-10(1 + k%) (

+ 4{3(3 + 2k* + 3k%) (21()4 —32.10(1 +K?) <

7T

2 4 2K ! 2 2
+493(3 42 +3K4) () —5-10(1+8) (>
_.|_

etc. etc.
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II.

From the formula:

<2kK>Zsin2am2Kx 2K 2K 2K 2F! 4{2qc032x 4q% cos4x  64° cos b6x

T w7 1—g? 1— g

you obtain the following:
4
2-3 (ZkK> sin*am 2Kx
T T

e (2 (5 2) (%)

_ . 2y (2K 2 3 g cos2x
4{2 41+k7) | =— -
. 2 27K 2 3 q° cos4x

4{2 4(14k%) —4 —
_ . 2y [ 2K 2 3 g° cos 6x
4{2 4(1+k)< S -

2-3-4- 5<2kK> sm@am?

I 3
= 8(8 + 7k* + 8k*) <2K> (ZK — 2E> — 32K3(1+ k) <2K>
7T 7T 7T
2

4
-4 {2 8(8 + 7k* + 8k*) (2K> —23.20(1 + K2) (22() +25} qlcis;zx
2 2
—4<4. 8 —|—7k2 8k4 2 _43 20 1+k2) % +45 q cos4dx
7T T 1— q4
2 3
—4<{6- 8 8+ 7k2 +8k4 % _ 63 20 1 +k2) % +65 q Ccos 6x
etc. etc.
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ITI1.

From the formula:

2715 1 +4qsinx+4q3sin3x+45]551r15x+etc
sinam 2&* " sinx  1—¢ 1—¢° 1— ¢ :

you obtain the following:

2K\3
2(%)
sm%m%
2K\?% 1 42
=(1+K) ==
(1+ )(71> sinx  dx2

1}
2K\ ? 3 sin 3x
2y (2B _ 201
+4{(1+k)<ﬂ) 3} T
2K 5 sin5x
2y (2B =201
+4{(1+k)<n 5} —
_J’_..
2.3.4 (%)
smSamZK—x

3(3 + 2k2 4 3k4) (2)* 2 2 4
= B+ + )(ﬂ) +10(1 + k%) 2K i.l di'l
sin x T dx2sinx  dx*sinx

4 .
+4{33+2k2+3k4) (21() —12-10(1+K?) <2K> +14}‘75mx
T T 1-¢
4 2 3 -
14033 +20 13K () =32 10(1+8) (2] 4oty LI
4 2 5 -
14033 +22 13K () =5 10(1+8) (22 ) 45ty LI

etc. etc.
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IV.

From the formula:

(%)’
7T
sinzamﬂ%x
_ 2K %_LEI n 1 4 2¢%cos2x  4q* cosdx
o \nm s sin? x 1—-g¢? 1—q*

you obtain the following:

4
2-3(%)

sin* am %

e () (52) e (2

+4a+k%(%f 21

sin? x dx? gin? x

2K\ ? 2 cos 2x
— : 2y (28] 3 T COSoX
4{2 4(1—|—k)<n> 2} g
—4 4-4(1—|—k2) 2K 2_43 M

T 1—g*

B . oy (2KN\? 5| 9°cos6x
4{64(1+k)<7r A
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2.3.4-5(%)°

sin® am 2Kx ZKX
I
= 8(8 + 7k + 8k*) <2k> <2K — 2E> — 32k*(1 + k%) <2K>
7T 7T 7T 7T

8(8 + 7k2 + 8k4) (Z)*
+ (8+ +2 ) (%) +20(1+k2)<

sin” x
2
—23.20(14+K?) < +25}‘7C°‘°’2x

TN
) dx?sin’x  dx*sin?x

K 4

—4{2-8(8+7k2+8k4 ( >
7T

4 2
—aasEr7e skt () —g 20048 () 44 M
7T T 4
2K

K 5

4 2
2K
—4{6-8(8+7k2+8k4 < —6-20(1+ 1) <n +65}q€086x

etc. etc.

45.

The examples propounded in the preceding paragraphs tell us how the

expansions of the functions sin” am Zfrx, ﬁ are found from the formulas

(2.), (3.), (6.), (7.) in § 43. The quantities Al ), B on which they depend
can be found successively by means of the formulas (4.), (5.) of the same
paragraph. But to answer the question how to obtain general expressions
for them, because they become too complicated to find them by induction,
one has to elaborate a little more on this. For this purpose, we mention the
following things in advance.

The following elementary formula is known:

2sinamvcosam uA amu

. . 4
1 — k2sin? am u sin® am v

sinam(u + v) — sinam(u —v) =

having integrated which with respect to u it results:
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u

(1.) /du {sinam(u +v) —sinam(u —v)} = %ln (1 +ks1namus1namv> .
0

1 — ksinam u sinamv

From Talyor’s theorem it is:

i a3 13 S R

. . dsinamu Bsinamu 0>  dsinamu ©°
sinam(u +v) —sinam(u —v) =24 ——— v+ . . ,

whence it follows:

u
d2 si 3
O/du {sinam(u +v) —sinam(u —v)} =2 {sinamu-v+ s;%zmu : % + A 1B

For, having put u = 0 it is easily seen that both sinamu and in general

% vanish. Hence equation (1.), having also expanded its other side,

goes over into this one:

@) Sinam i U+dZSinamu zi_i_d‘*sinamu U—S—i—etc
' du? 113 du? I15 ’

k> K

=sinamusinamuv + 3 sin® am u sin® am v + 5 sin’

5

amusin’ amv + - - -

Further, having multiplied the known equations:

2 sinam u cosam vA am v

1 — k2sin?am usin?am v

2sinam v cosam uA amu

1 — k2 sin? am u sin® am v

sinam(u + v) + sinam(u — v) =

sinam(u + v) — sinam(u — v) =

by each other we obtain:

2

(2.) sin®am(u + v) — sin? am(u — )

4 sinam u cosam u/A am u - sinam v cos am vA am v dsinamu - dsin?am v

d*sinamu ©°
4.8

2 2

[1 — k2 sin® am u sin® am ]2 [1 — k2 sin® am u sin? am v]2dudv’
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Having done the integration with respect to v this equation results:

/dv {sin’am(u + v) — sinam(u —v)}
0

2sinamu cosam #Aamu - sin> am v B sin
1 — k2sin? am u sin? am v (1 — k2 sin®am u sin

Zamv - dsin?am u

2

amv)du

Having integrated this equation once again but with respect to the other
variable 1 we obtain:

—%

u v
(4.) /du / dv {sin’am(u + v) —sinam(u —v)} = 1 In(1 — k% sin? am u sin? am ).
0 0

From Taylor’s theorem it is:

2

sin® am(u + v) — sin® am(u — )
’ dsin®amu . a3 sin?am u 073 d5sin?amu 075
du dus I13 dud I15 !
whence:
(%
/dv {sin?am(u + v) — sin*am(u —v)}
0
) dsin®amu 072 n 43 sin am u 074 d5 sin? am u 076
du 2 dus 114 dus 116
u (4
/du / do {sin?am(u + v) — sin®am(u —v) }
0 0
2 ) 4 4 i 2 6 4 6
. 9 v d*sin“amu v d*sin“amu o (2) 0 (4) 0
B il A Mttt AN RN U, 0 b ) (0 SRR § (C) Bl
2{sm MU T T T At 16 } { - 16

d?" sin? am u
dy2m
by the character U™, Hence equation (4.), having also expanded its other

side, goes over into this one:

if we denote the value of the expression which it obtains for u = 0
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2 2 i 2 4 4 52 6 4 6
Pamy. o 4 Asinfamu ot disin"amu v° 0 foo 0w @ L
(5.) sin“amu I T2 ma T T e {U H4+LI e+
2 .2 k? 4 4 K 6 . 6
am u sin amusin amo—+ -

zisin amv—i—zsin am u sin amv+€sin

Having prepared these things put

3 5 7

u =sinamu + Ry sinamu + Ry sinamu + +Rzsin"amu + - - -,

and in general

u" = [sinamu+Rlsin3amu+stin5amu++R35in7amu+ S

(n) (n) (n)

=sin"amu + R} sin"t2 amu + R, sin"t*amu + R sin” 10

amu+---;
further, from the inversion of the series:

7

sinamu + R; sin®am u + Ry sin® am u + +Rs sin” amu + - - -

let this one result:

sinamu = u+51u3+52u5+53u7+...,

and let it again be:

sin"amu = [+ 5% + Sou® + Syu” + - " = "+ 5 w2 4 g4 gy to

Now, from equation (2.):

3 5

d?sinamu v +cl‘lsinamu v "
du? I13 dut I15
k2 %
. . .3 .. 3 .
= slnamusinamo + g sin” am u sin” am v + gsm

sinsinamu - v +

5 5

amusin’amov+ - - -,

having expanded v, v®, v° etc. into a series of powers of sinam v and having
compared the coefficients of sin”"*! am v on both sides of the equation this
equation results:
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an 2n+1
6.)
2n+1
2 qi 4 o3 21 o3
1 . (3) d°sinam (5) d*sinam d“" sinam u
— R R X >4t ¢ smam @ SHadmR
e SNAM R Ty g T st T Ti(2n 4 Ddu®

In the same way from formula (5.) this equation results:

an —2 oin2n

sin”" am
7. i
(7.) 7
_R® sin?am u (4) d? sin® am u (6) d* sin® am u S d?"2gin? amu
R § V) =2 114 - du? n=3 116 - dut I1(2n) - du?n-2
RY, RV, o) RY, S
_{3-4 *s. 651 Tt 852 Tt oo
From (6.), (7.) having changed u into u + iK' it follows:
1
8.
®) (2n +1)sin®* ™ amu
RYORY 2 RY, & 1 L1 21
~ sinamu ' 113 dilsinamu ' 115 du*sinamu I1(2n+1) du?"sinamu
1
9. —_—
) (2n) sin®* am u
Rff)l . RY, # 1 RY, at 1 T Y
T I2-sinfamu | 14 disinfamu | 116 dusinamu I1(2n) du®—2sin’>amu
(4) (6) (8) (2)
_k2 Ran_’_Rn 35()+Rn 45()+ ce Sn72
3-4 5.6 7-8 (2n—1)2n ("

These are the general formulas we are looking for by means of which sin"” am u,
S 1am - are found from sinam u, sinamu, " ;m i 1amu and its differentials.
On this occasion I remark, if vice versa sinamo, sin?am 0, sin® am v, etc. are

expanded into a power series in v, that from the formulas (2.), (5.) it is found:

(10.) d?" sinam u
I1(2n + 1)du?r+1
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k2 k4 an

1) . 3) . 5 . . .
= S,(1 Jsinamu+ — 8% sin®amu + —51(122 sin® am + - - sin? ! sin® ! am u

3 nl 5 2n+1
(11) d?" sin? am u B S,(f,)l
' I1(2n+2)du® (2n+1)(2n +2)
1o . o Ko o o© o6 S
= ES" sin amu—i—zsn_l sin amu+€Sn725m amu+~-+msm "2 amu.

Finally, some things concerning the invention of R,gf ), SS,? ) are to be added.
Having put sinam u = y, from the propounded definition it is:

Yy
dy 3 5 7
u=/ =y+Riy + Ry’ +Rsy” +---
5 /A=y -ky?)
or:
zdy — =1+3Ryy* +5Rpy* + 7R3y + - - - ;
V(I —y2)(1—ky?)
hence it is:
14K 1.3 11, 1.3,
SR =5 SRe=gy o ok
1-3-5 1-3 1 1 1-3 1-3-5
7Ra = il 2l 4 6
Re=oaetza 2l 2248 taa¢
1-3.5-7 1351, 1.3 13, 1135, 1:3-5-7 ¢
9R4_2 168 246 2k 2 -4k T332 4-6k +-2-4-6-8k
etc etc
or also:
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3R, :% (14K
5R; :% -(1+k2)2—% K2
7R3 :;:i:z -(1+k2)3—% B(1+K)
9Ry :; Zzg ~(1+k2)4—;:i:2 k2(1+k2)2+;
11R5 = % -(1+k2)5—;:i:2:z k2(1+k2)3+;:
13Re = 21 43~.65~.87.190-1112 (14K~ ;:2:2:;2 kz(”kz)u;
or also:
31{121—%-1-142
5R2_1—% 2K+ 5 1-k*
7R3_1—% 3. k’2+% 3.k - ;:Z:gyk@
9R4:1—%-4-k’2+g 6-kK*— ;:222-4-k’6+;2:
etc. etc.
or finally:
3R1:k2+%-k/2
5R2:k4+; 2k2k’2+%-k’4
7R3:k6+%-3k4k/2 % 32Kt + ; Z Z K
9R4:k8+%-4k6k/2 ; z 6k K* + ;Z Z 412K + ;
etc. etc.

3-
4.

7](/

OO@

From these four ways to express the quantities R,, the second way yields a
sufficiently memorable and beautiful representation of them, if we introduce

the quantities:
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14k
2k
For example it is:

13R6_1-3---11r6 135794+13572 1-3-5
K  1-2---6 1-2-3-4.2 1-2-2-4 2-4.-6"
having integrated which expression 6 times with respect to r we obtain:

o — Clr L2
12 2468102 246824 246246 -~ T

A2 10 8 6
13/R6dr _ r T T

C’/, C", C" denoting arbitrary constants. Having determined them this
equation results:

Redr®  (r?—1)°
13/ - 26.116 7

whence vice versa it is:

Ked(r> —1)°
26. 116 - dr6’
and in the same way it is obtained in general:

13Rg =

_ kmdm<1’2 _ 1)m
o 2m . TIm - drm
Confer the short commentary (Crelle Journal II. p.223) with the title:

(12)  (2m+1)R,

"Ueber eine besondere Gattungen algebraischer Functionen, die aus der En-
twicklung der Function (1 — 2xz + zz)*% entstehn."

Having found the quantities R,, by means of known algorithms one has to
find quantities R,(,? ), S,gf ) that it is:

[1+Ryx+Rox? + Rax® + -+ )" =1+ RWx + RV2 + RV 4. -

turther, if it is put:

y = x[1 + Ryx® + Rox* + Rax® +-- -],
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let:

2 =y 1+ S sy Sy
these agree with the definition of the quantities R, st propounded above.
But having put:
p(x) = 14+ Ryx+ Rox* + Ryx®+ -+,

from a theorem found by MacLaurin and Lagrange it is:

g _ 4" [e(x)]"
" IIm - dx™
m _ o ond"p(x)] "
" d2m4n ITm - dx™

7

if one puts x = 0 after the differentiation.

46.

By means of the formulas (6.), (7.), (8.), (9.) of § 45 we obtain the following
general expansions:

2n+1 2Kx
T

2n+1
(Zk—K) sin am

2n+1

_4{R(1) (2I<>2n_R£l3_)1 (ZK)ZYL—Z +R;(,15_)2 (21<)2n—4 - (_1)1’1 }\/ﬁsinx
" 11

n 3 \ 7 5 \ 7 (Zn +1)f 1—¢q
+4{R(1) (2K)2n _32R£13) <2K>2n2+34R£l) <2K> - n32n }\/7511‘1336

T I13 T I15 T (Zn +1) 1—¢3
Y EIONES 2 _ 52R7(1371 2K 2 " 54R7(i)2 2K and N 1)"5%" \/731n5x
B "\ 113 T I15 T H(Zn +1)f 1-¢°
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( 2]%( ) o sin?" am 2Kx
(2)

T
2n
2)

_ 4 6 8 2
Ry (2K 2B KV RD Ry Rilege S
2 \n A T 3-4  5.61 7-872 (2n—1)2n

L e

B T (—1)”122”1}qc052x

2 114 12n 1- ¢
2) (k"2 ap@) (k)4
4 4R, (7) B 4R, 75 (7) - (—1)"=1427=1 42 cos 4x
12 114 I12n 1—¢*
@ (2k)\*"? ap@) (k)4
Ly 6R, "y (?) B 6°R, 5 (7) T (—1)""162"~1) g3 cos bx
12 T14 121 1—¢°
(%)27’!4’1
3) :
(2n + 1) sin®"*1 am 2&x
(1) (26 \*" (@) (2k)*2
_ Ra (7) N Ry~ (7) #1 1 a1
- sinx 113 dx? sin x [1(2n+1) dx?"sinx

3 2n—2
44 R(l) % 2 _ Rnfl (%> 4ot (_1)11 qSinx
" 113 M2n+1)[1—¢q

2K . (—1)"32" ) ¢°sin 3x
e 113 Men+1) ) 1-¢°
(3 2n—2
L R(l) % 2n - 52Rn_)1 (%) L (_1)n52n q5 sin5x
T I13 2n+1)) 1—¢°
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(%)”

21 - sin?" am ZKT"

(4)

2 3-4

BTG GO B SR

s 7T 7T

=

d2n—2 1
I12n ' dx21=2 gipn2 y

dx? sin? x

(—1)"227=1 42 cos 2x
I12n 1—g2

(—1)m427=13 g* cos4x
TT2n 1— ¢
2n-2
o, ()
—4 _ N

(—1)"6*"~1Y ¢° cos 6x
I2n 1—¢b

From the formulas (6.), (7.), (8.), (9.) of § 45 one can deduce others involving
the functions cosamu, tanamu, Aamu instead of sinamu. For, from the
formula:

. , ik
sinam [ k'u, v )= cOs coam U,
whence it also is:

sinam <k’(K —u), k) = cosamu,

i
k/
we see that in the propounded formulas, if one puts % instead of k and
k'(K — u) instead of u, sinamu goes over into cosam u, whence one finds

similar formulas corresponding to cos am u. Further, from the equation:

sinamiu = itanam(u, k')

it is clear that at the same time one can change u into iu, k into k’, sinam u into
itanam u; hence we find formulas for tan am u. Finally, from these, because

cotam(u + iK') = —iAamu,

151

2 2K\ 21 /2K 2F! 2K\ 2" 1 4 1 6 2 1 8 2
I, () (Y (B o 1

4

(2n—1)2n Su-2



one can find formulas for A am u corresponding to the formulas (6.), (7.), (8.),
9.). Having found these by means of a similar method from the expansion of
the functions:

X > 2Kx 3Kx >  2Kx
cosam —, cos”am —, Aam —, A“am —
T 7T T 7T
1 1 1 1
4 7 7 A 9K
cos am 2 cos? am 2&x Aam 2 A2 am 2Kx

7T 7T T T

propounded by us one deduces general expansions of the functions:

cos” am &, A" am ZK—x
T T

It shall be sufficient to have mentioned these things.

We obtain extraordinary transformations of the series into which we expanded
the elliptic functions after having put ix instead of x and applied the formulas
we gave for the reduction of an imaginary argument to a real argument in the
first foundations. But because those are easy to obtain we do not want to treat
this subject here any longer.

2.3 THE SECOND KIND OF ELLIPTIC FUNCTIONS IS EXPANDED INTO
SERIES
47.

Having integrated the integral formula exhibited above in § 41 (1.):

2kK Zsin2am&—%%—4 2qc052x+4q2cos4x+6q3cos6x
o 1— g2 1—qg4 1—g°

from x = 0 to x = x it results:

<2kK>2/x ., 2Kx
— sSIN” am ——
7T 5 7T

+ }

_{21(21(_21(2151}x_4{qsin2x gsindx  g°sin6x q4sin8x+ }

1_q2 1—174 1—616 + 1—618
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In the following, let us denote the following expression by the character

%z (%),

2Kx (2K 2E! kK2 | 2K
(1.) %Z (2Kx> = ( — > — <k) /sin2 am " dx
7T 7T 7T 7T 7T s 5 7T

_ gsin2x  g?sindx gsin6x  g*sin8x
_4{1—£]2 + T—g + 1— g + T—¢ + .

2Kx
t =

From Legendre’s notation having pu =u, ¢ = amu it will be:

1 I
2)  z() = LE@) FIE Flo)
It is convenient to introduce the function Z(u) instead of E(¢) into the analysis
of elliptic functions; moreover, it is easy to reduce it to the functions used
by Legendre by means of formula (2.). We want to sketch a little bit, how
from the expansion of the function Z which formula (1.) yields it is possible
to derive many of its properties, even though they are already known.

In (1.) change x to x + 7, then it results:

2K _ (2kx gsin2x  g*sin4x  ¢’sin6x
N (i — 4 _ .y
7_[Z<7_[—|—K> {1—q2 g 1

whence it is:

2k, (2Kx\ 2K, 2Kx+K>:S{qsin22x+q3sin66x+q55inllgx+'”}‘
T T T T 1—g 1—g 1—gq

Further, in (1.) change x to 2x, g to 4%, and at the same time k to k(?), K to
K, then this equation results:

2K2) [ 4K(?) 2sindx  g*sin8x  g®sin12x
@) 434 1 q
- Z( Lk 4{ g + T + T + ,

whence it is:
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%Z 2kx ZK(Z)Z 4K ) K@) — qsian+q3sin6x+q551n10x+'“
T T T T’ Sl 1-¢? 1—g° 1—q10 '

But above we found:

1—9q 1—¢° 1—¢°

?J;K inamzl;xz{ gsinx \Fsm3x+\ﬁsm5x },

whence having changed g to ¢, x to 2x it is:

2K 4K@x gsin2x  ¢*sin6x  ¢°sin10x
—,; —sinam k@) :4{1_q2 + T— g6 + 1= q10 —|—}

Hence it follows:

@K@ @
3) X {z <2Kx> ~Z <2Kx +K>} _ TR nam <4K x,k<2>>
7T 7T 7T 7T 7T

2 2) 2 k@) 2)
w Xz <2Kx> _2K® <4K x,k(2)> _ anKsinam <4Kn x,k(2)>

7T 7T 7T 7T
2 2)
5) By () 2Ky (K g) <4f< x,ka)):&
7T 7T 7T 7T 7T 7T

In these formulas, of which (4.), (5.) yield the transformation of the function
Z of second order, it is:

(2)_1—]{/ K(Z)_1+k,

()
BEET =— -K, sinam <4K7T x,k(2)> (1+K) smam% smcoamZK?x,

as it is known for the transformation of second order propounded by Legendre.
Hence formula (3.) having put u = 2K can also be represented this way:

(6.) Z(u) — Z(u + K) = k? sinam u sin coam u.
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For the sake of brevity let us put am (2””( ,km )> = ¢, from formula (4.),
having successively put k@2 k) k®) k(6) ... instead of k and 2x, 4x, 8x - - -,

instead of x, this equation results:
(7.) K-Z(u) = F'E(¢) — E'F(¢) = kPK® sin 9 + kB K sin ¢®) + kB K®) sin &) +

which formula was given by Legendre.

In like manner from formula § 41:

2K2K 2K 215I q 7’ q° q’
T T T - 7 T 32 T 52 T AVILE
mmwo o 1-9? (-9 (A=) (1-g)
which can also be expressed this way:
2K2K 2K2F' 24° 3¢ 4q*
— = q2+ q4+ q6—|— q8+-~- /
T T T T 1—g 1—g 1—g 1—g

having compared it to this one we found above:

2kK | * q 343 5¢° 7q7
(ﬂ) _16{1—q2+1—q5+1—q1°+1—ql4+m}’

this equation results:

(8.)  2K(K—EY) = (kK)2 4+ 2(kP K@) 4 4(kWK&))2 4 8(kGK®)2 1 ...
which agrees with that one Gauss gave in his paper Determinatio attractionis
etc. § 17.

48.

By means of the same method we used in § 41 to find the expansion of the
expression (2“() sin?am 22 let us investigate, how to expand the expression

{7z (%K) } into a series. Let us prove:
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2K 2Z 2Kx 7 2Kx — 16 qsinsz+qzsinil1x+q3sin66x+'“ 2
T T T 1—g 1—g 1—g

=8{A+ A'cos2x + A" cos4x + A" cosbx + - - },

which expression we see to take on the propounded form, if one puts

cos2(m —m')x — cos2(m + m')x instead of 2 sin 2mx sin m’x everywhere. At
first it is:

e g2 . g* 6 q

Q=g (g9 (1-¢°2 (1-g°)?

After this, in general we obtain: A" = 2B — C(" if it is put:

8

+ + +oe

(n) qn+2 qn+4 qn+6
B = (1—g2)(1 — g2 +2) + (1—g%)(1 — g2+ T (1—g%)(1 — g2n+0) LI
q q q q q q
C(n) = q q + -+ q

e e R e D e R e

In the single terms of these expressions respectively put:

qurn B qn qm B q2n+m
(1 _ qm)(l _ q2n+m) T 11— q2n 1— qm 1— q2n+m
qn qn { qm q2n—m }
= + +1%,
(1 _ qn)(l _ an—m) 1— an 1— qm 1— an—m

then it results:

q { r 4+1z6q6+m}

l] {1[12”;12 qz;::+4+122;;6+6+”'}

nq {1 7 +1z6q +m+1i2;2”}
C(n):<’1l:;‘7n+12‘7; {1i2q2+1z4q4+1z6q6+...+1z2’;252}.
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hence:

A(n) _ ZB(H) _ C(n) _ (7’1 — l)q” 2q3n nqn qn<1 + an) .

1— g2 - (1—gq2n)2 __1_q2n + (1—q?)2"’

Having collected all these, one finds the expansion in question:

(1.) (2K>ZZ (217'<tx> 7 <2Kx> :SA_8{CICOSZX n 242 cos 4x n 34° cos 6x N

T T 1—¢2 1—qg* 1—q°
1+ g?) cos 2x 2(1 + g*) cos4x 3(1 + g°) cos 6x

48 q q +q q +€/ q
(1—¢%)? (1—g%)? (1—4g°)? '

Because A = (1_‘7;2)2 + (1324)2 + (1j26)2 + -+ can also be expanded this way:

2 2q4 3‘76 4q8
2+1_q4+1_q6+1_q8

A q

from § 42 (6.) we find:

2 1
(2—k2)(27';) — 32K 2L 4 g

(2) B8A= 3

Further, it is known that:

2 [2K\? }_ (2K 2K
-2 () )2 (22 (%)
T T 7T T
0
for, having integrated equation (1.) from x = 0 to x = 7, all terms except for
the first vanish; hence, if one prefers to use Legendre’s notation:

) /2 [F'E(g) — Elp(q))]qu) _ 2-R®)F'FF - 3FFE + frn!
o Alg) 3 ’

which is the evaluation of a rather intricate definite integral.
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2.4 INDEFINITE ELLIPTIC INTEGRALS OF THE THIRD KIND ARE
REDUCED TO THE DEFINITE CASE IN WHICH THE PARAMETER IS
EQUAL TO THE AMPLITUDE

49.

Before we get to the expansion of the elliptic integrals of the third kind into
series, we want to explain some things concerning their theory using a similar
notation as Legendre. Soon the same will also be presented in new notation.

We begin with certain known theorems on elliptic integrals of the second kind.
It is:

2sinam u# cosama/A ama

1 — k2sin?amasin®am u

2sinamacosamuAamu
2

sinam(u +a) 4+ sinam(u —a) =

sinam(u +a) —sinam(u —a) =

. . 4
1 — k2sin?amasin®amu

whence it is:

» .2 4 sinama cosamaA amasinam 1 cosam uA am u
am(u +a) —sin”am(u —a) = 5

sin

[1 — k% sin? am a sin® am u]?

after having integrated which formula with respect to u this equation results:

u
2si A in2
(1.) /du[sinzam(u+a)—sinzam(u—a)] _ SiInamacosamalAamasin.-amiu

0

. . 7
1 —k2sinfamasin?amu

as we already found above.

Put: amu = ¢, ama = a, am(u +a) = o, am(u —a) = ¢, in Legendre’s
notation it will be:

k2/du sinffamu = F(¢) — E(¢),
0

whence, because it is F(0) — F(a) = F(¢), F(9) + F(x) = F(¢), it is:
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kz/du sin®am(u +a) = F(¢) — E(¢) + E(«)
0

kZ/du sinam(u —a) = F(¢) — E(8) — E(«).
0

Hence equation (1.) goes over into this one:

2k? sin « cos aAa sin® ¢

(2)  2E(a) —[E(0) — E(9)] = 1 — k2sin® asin® ¢

Having interchanged u and 4, a goes over into ¢, ¢ into —8, o stays unchanged,
whence from (2.) this equation results:

2k? sin ¢ cos pA@ sin® «

2E(¢) — [E(0) + E(9)] =

7

1 — k2sin? asin®

having added which to equation (2.) we find:

(3.) E(g) + E(x) — E(0) = k*sinasin ¢ sinc,
which is the theorem on the addition of the function E, given by Legendre, 1.c.
cap IX. pag. 43. .

Integrals of the form:

/q) sin® pd g
[1 — k2sin® a sin? @] A(@)

constitute the third kind according to Legendre’s classification of elliptic
integrals into species. He calls the quantity —k?sin® &, he denotes by 7, the
parameter; we will in the following call the angle « the parameter. For these
integrals, having multiplied equation (2.) by

de do ad

Alg)  Alo)  A(9)
and having integrated from ¢ = 0 to ¢ = ¢, having done which the boundaries
for o will be: ¢ = &, 0 = 0, the boundaries for ¢ will be: 4 = —a, ¢ = ¢, we
find the following expression:
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/QDZk2 sin(T'cozs aA'lxzsinz pde _ 2F(g)E(w) — / E(o)do . /q) E(ﬂ)dt?'
[1 — k2 sin” a sin” @] A(¢)

[E(0)do _ [E(p)dp [ E(g)dg
[ty = st~/ ate)
FE@)dd  [E()de  [E@)de [ E(p)dg [ E(g)dg
/A(ﬂ) _/ A(o) _O/ A(o) _0/ Ag) _O/ Alg) ’

we now obtain a new and memorable

Theorem 1.

Determine the angles ¢, o that it is:

F(¢)+F(a) =F(0),  F(¢)—F(a) =F(9),
it will be:

7 k? sin® & cos aAa sin® pd @
/ [1 — k2sin® a sin® @] A(@)

q

I\JH—‘
N\

BIEea e
0 0
such that the third kind of elliptic integrals depending on three variables, the modulus

k, the amplitude ¢, the parameter , are reduced to the first and second kind and the
new transcendent:
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which all depend only on two variables.

50.

Let us put F(ap) = 2F(a), if ¢ = @, itis 0 = ap, & = 0, in which case from the
propounded theorem we obtain:

«
(1) / k*sina cos xAasin® pdg

I\J\H

03

This formula tells us that instead of the new transcendent one can also
substitute this one:

/ [1— k2sin® asin g]A(@)

/a sin® pdg
[1 — k2sin® a sin? ] A(@)

which is a definite integral of the third kind in which the amplitude is equal to
the amplitude which therefore also only depends two variables, the modulus
k and the quantity which is the parameter and the amplitude at the same
time.

Let us put 2F (i) = F(¢) + F(a) = F(0), 2F(6) = F(¢) — F(x) = F(9), from
(1.) it will be:

1 /J — F(0E(u) - /H k? sin p cos pAy sin® pd g
2J M) : J 1=k sin® y sin” @] A (@)
1/l9 E(p)dp VE(6) — /5 k? sin § cos 6AS sin® pd g

2/ A B ) [1-k sin® 6 sin” 6]A(¢)”

having substituted which formulas in the theorem propounded in the preced-
ing § we obtain the following
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Theorem II.

Determine the angles u, 6 that it is:

F(V):F(¢);F(“)/ F((S):F(GD)_F(“)

it will be:

?

)
k2 sin & cos aAa - / sin” ¢dp

J U= Resin?asin® ]A(p) F(g)E(a) = F(u)E(p) + F(9)E(9)

sin® pdg

H
+ k2 si A /
S HCOSHEHR / [1 — kZsin? jsin® @] A(9)

sin? pd g
1 — k%sin® §sin? ] A(¢)”

)
— k*sin b cos 6AS - / [
0

by means of which formula the indefinite integrals of the third kind are reduced to
definite ones in which the parameter becomes equal to the amplitude, and hence those
indefinite integrals that depend on three variables are reduced to other transcendents
that contain only two.

Having interchanged « and ¢, ¢ goes over into —¢, ¢ remains unchanged,
whence, because moreover it is:

from theorem I:

¢ K2 sin & cos aAw sin’ pde 1 7 E(¢)de
[ St SRR B(g)E) -5 [
/ [1 — k2 sin” a sin® ¢]A( @) 219

we obtain:

[ k2 sin & cos pA @ sin? adu 1 7 E(¢)de
= F(a)E - = .
0/ [1 — kZsin® ¢ sin® a]A(a) (*)E(e) 2 19/

Hence having done the calculation it results:
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[ o
k2 sin & cos aAa sin? od k2 sin & cos A sin® adu
@) | P — = F(p)E(w) — F()E(g),
0

[1 — k2 sin® a sin® @] A(g) / [1 — k2sin® ¢ sin® a]A(a)

which formula tells us that integrals of the third kind can always be reduced to
another in which what was the parameter becomes the amplitude and what was the
amplitude becomes the parameter.

If in formula (2.) one puts ¢ = 7, we obtain:

L 2
(3) / [kl sina cos aAwa sin® pdg FIE(@) — E'F(a).
0

— k2 sin? a sin® @] A(9)
Formulas (2.), (3.) agree with those Legendre exhibited in cap. XXIIIL pag.
141 (1), (p")-

2.5 THE ELLIPTIC INTEGRALS OF THE THIRD KIND ARE EXPANDED
INTO A SERIES. HOW THEY ARE CONVENIENTLY EXPRESSED BY
MEANS OF THE NEW TRANSCENDENT ©

51.

From the formula:

2K 2K
sin® am ?(x + A) — sin®am ?(x —A)

2KA

T

2KA
T

} ) 2
{l — k2sinZam % sin2 am%}

2Kx 2Kx 2Kx
7 Aam =~

4sinam sin am £ cosam

cosam %A am

7

which is known from the elements, by integrating we find:

(1) 2K/dx{sinzamZK(JH—A) —sinzamZK(x—A)}
) 7T T

2KA
T

2KA
T

2Kx

SHlanle*

2Kx
T

cos am %A am

2KA
T

2sinam

1 — k2sin?am sin? am

In § 41 we already gave the formula:
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64° cos 6x

2kK\? . , _2Kx 2K2K 2K2E! 2gcos2x  4g?cosdx
— ] simnfam— = —— - ———4 — + Tt z
T T T T 1—g 1—g 1—¢q

whence it is:

2
<2kK> {sinzamZK(x—i—A)—sinzamZK(x—A)}
7 T s
6q° 6(x—A
) g° cos 6(x )+}

2gcos2(x — A)  4g*cosd(x — A
=4 1— qz 1— q4 + 1— qé
.y {Zq Ccos 2(x2—|— A) N 4q? cos4(x4—|— A) N 64° cos 6(x6—l— A) . }
l—gq l—gq I—q
2gsin2Asin2x  4¢°sin4Asindx  6g°sin 6A sin 6x
=8 2 4 + 6 T
1—q 1—q 1—q

Hence from (1.) it is:

ZKA cossinam =2 ZKA =L Asinam & Sll’l sinam &

2K 2k? sinam 284
ZKA sin? sinam &

2. —
@) T — k2 sin? sinam 284
B 2gsin 2(x —A)  4g%sin 4(x —A)  64°sin6(x — A)
—const.+4{ 1— ¢ =g =g +
2gsin2(x + A)  4g°sind(x+ A)  6¢°sin6(x + A)
l—gq 1—q 1—q
2gsin2Acos2x  4g°sin4Acos4x  64°sin6A cos6x
= const. — 8 > 7 G +- 0,
1—q 1—q 1—q

where the constant has to be determined in such a way that the propounded
expression vanishes for x = 0, whence from § 47 (1.) it is:

i Zsi 3sin6A 2K (2KA
const. = 8 qs1n22A 1 sm44A+q sm66 + - } =2 Z< >
1—g 1—g 1—g T

Having integrated formula (2.) from x = 0 to x = 7, because 7 - const. results,
and the other terms vanish, having put 284 = g, ZK" = u, we find the definite

integral:
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K
/ k2 sinam a cos am aA am 4 sin

1 —k2sin?amasinamu

2 am udu

=K- Z(ll),

which is the same as (3.) § 50.

In the following we will denote the following integral by the character
IT(u,a,k) or in even shorter notation by I'T(u,a):

¢ .
/ k? sin am a cos am aA am a sin® am udu / sin & cos aAa sin® pd ¢

2 — k2 sin? asin” ] A(¢)”

I(u,a) = 5
1 —k2sin®amasin?amu

0

if 9 = amu, & = ama. Having constituted these things and integrated
equation (2.) again from x = 0 to x = x it results:

3) 1 <2K’“2KA)
T’ 7
_ 2Ky, (ZKA) _{qcosZ(x—A) g?cos4(x — A)  g*cosb(x — A) }
7T ﬂ 1—¢? 2(1—¢%) 3(1—-¢°)
qcosZ(x+A) g?cos4(x+ A)  g*cos6(x+ A)
1—¢? 2(1+4%) 3(1—1¢°)

I <2Kx 2KA> _Z{qsm2Asir12x N g% sin4A sin4x N g’ sin6Asinéx = }

o 1—¢? 2(1 =) 3(1—-¢°)

which is the expansion of the elliptic integral of the third kind we are looking
for.

If one recalls the known expansion:

g% cos 4x N q° cos 6x N g* cos 8X N
2 3 4 ’

—1In(1—2gcos2x+¢°) =2 {qcos2x +
we see having expanded the single denominators 1 —¢%, 1 — g%, 1 — ¢° etc.

that formula (3.) takes on this form:

(4) (mm)

n' n
ZKXZ 2KA +11n (1—2gcos2(x — A) +4%)(1 —2¢%cos2(x — A) +4°) - -
T T )2 (1—2qcos2(x+A)+4*)(1 —2¢3cos2(x+A)+q°)--- )
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52.
Having integrated the formula (1.) § 47:
2K _ (2Kx\ _ , [gsin2x g*sindx  ¢°sinéx
e <> _4{ =@ Cieg T

T
from x = 0 to x = x this equation results:

i 2 3 -
% 7 <2Kx> dx = _Z{QCOSZX q cos 4x q sin 6x

7_[0 1—!12 2(1—114) 3(1_q6)+---}+const.

= In[(1 —2g cos 2x + %) (1 — 2¢° cos 2x +4°) (1 — 2¢° cos 2x +¢'°) - - - ] + const.

where the constant, having determined it in such a way that the integral
vanishes for x = 0, is:

2

3
2{1_qqz+2(1q_q4) +3(1q_q6) +---}:—1n[(1—q)(1—q3)(1—q5)-..]2,

and hence:

K T 2Kx B (1 —2qc052x+q2)(1 —2q3 c052x+q6)(1 —2q5 cos2x+q10) e
) n-o/z(n)d"‘h‘{ (- =)0 =g i

In the following, we will denote the following expression by the character
O(u):
} Z(u)du
O(u) = ©(0)ed ,
where ©(0) denotes the constant that we leave undetermined for the moment;
we will find a convenient way to determine it below; from (1.) it will be:

© (22)  (1-2gcos2x +¢%)(1 —24° cos 2x + q%) (1 — 2% cos 2x + ¢'0) - - -

7T

@) ey ~ @) ] :

whence formula (4.) § 51 goes over into this one:
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O(E((x-A
. <2Kx,2KA) _2Kx, (2KA> Ll (27;<(x )
T o7 T T 2 0 (?(x + A))
or having put 2 =y, ZK4 — 5 again

O(u—a) O 1. O(u—a)
IT =uZz =1 = =1
(3. (u,a) =uZ(a)+ = In (T a) u®(u) + n@(u+a)’
if it is put: d®d£‘”) = ©'(u). This is a comfortable expression for the elliptic

integral IT in terms of the new transcendent ©.

It is easily seen that ®(—u) = ©(u), whence having interchanged a and u
from (3.) this equation results:

B 1, O(u—a)
I(a,u) =aZ(u)+ Eln O +a)
having subtracted which from (3.) it is:
(4.) I(u,a) —I1(a,u) = uz(a) —aZ(u),

which is the same as formula (2.) in § 50. Hence having put I1(K,a) = IT(a),
since I'l(a,K), Z(K) vanish, it is:
IT}(a) = KZ(a),
which is Legendre’s formula we exhibited above as (3.) of § 50.
Having put u = 4, from (3.) it is:

©(2a)
0(0)

(5.) I1(a,a) =aZ(a) + %ln =aZ(a) —In
Therefore, we see that the new transcendent can be defined either by the

Eé(’(’gpd)“” by means of the formula:

integral [

u

Pl 1
g " FE(9)—E F(g) |
@(u) gZ(u)du B eg FAGy) de

or by a definite integral of the third kind by means of the formula:
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1. ©O(u—a) wu—a_[(u—a u—a u—a
2 ' Ou+a) 2 (2) (2’2)

_u+aZ <u+a> +H<u+a u+a>l

2 2

whence (3.) goes over into this formula:

(8.) H(u,a):uz(g)+“;‘lz<“;ﬂ>_u;raz<u;ra>

u—a u—a u+a uta
-n () e ()

which is the formula for the reduction of an indefinite integral of the third
kind to definite ones and agrees with Theorem II. § 50.

Corollary

Above we already deduced suitable algorithms for the computation from
the found expansions; instead of showing new things, but to understand
the nature of the things said better let us do the same for the invention of
expansion of the function:

P 1
2Kx " EE(9)—EF(9)
© ( ) _ e{ Fla(g)

(1 —2gcos2x + %) (1 — 2% cos 2x + q°) (1 — 2¢° cos 2x + ¢'%) - - -
[(A=g)A =) —=¢°) -]

For this aim, we want to mention the following things in advance.

Put the infinite product:
1 1 1
1= (i) () o) ()
C\l+q/\1+¢>) \1+q*) \1+¢° ’
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if one substitutes the following again and again:

1-?>=(1-q)(1+q), 1-g*=01-¢)1+4>), 1-g8=1—g"(1+4g%), -

it results:

reaso- (150 (55) (550 (55)

1 1

—o-o- 00t (150 (58) - (55)

—(1-g9 (-9} 0-g G;Z)(};Z)
whence we see that it will be:

(1) T=(1-91-92(1-q)i1—-q)51—q)%--=(1—¢q)>

Or also, because it is:

(50 (59 G5 )
144 1442 1444 1448
1— % 1— 2 % 1— 4 %
:(1_q>.< q)( q)( q>
1+¢ 1442 1+g*

itis T = (1 —q)V/T, whence T = (1 — g)>.

Therefore, it is

2) 1- —(“q);(l_qZ)i(l—q‘l)é...
' = \1+4 1442 1+ ’

in which formula we want successively put g, 4%, 4°, q” etc. instead of 4.
Recalling and using the formula exhibited above:
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#- (=) () (55) (55)
1+g9)\14+¢%) \1+4°) \1+¢7 ’

(1=9) (=)A= (1 —q7) - = [ (@[] -,
if, as above, we denote the quantity which depends on 4" in the same way as

k" on g or the complement of the modulus found by first transformation of
r-th order by k(")’.

it results:

Further, we found in § 36:

(A=A -P)A- )1} = 2{%" ,

whence now it is:

(3.) g = = 112;{/ k@2 [@ K@z ...
It is known having put m = 1, n = k’; 2 =/, /mn = n’; mé’", =m",

V' = n' etc. that k2 = 1 [ 4) — n,///, k@) = %l,///, etc., whence:

Nt )
0= { o) () () -}

Hence it also follows, because u = 55 denotes the common limit to which the
quantities m(?), n(P) converge:

(5) K=

iln16mn 3711’31717”31117”’+
mm—nn 2 w4 n 8 n

+-In—+-In— +<ln
2y

which formulas allow a very fast calculation. (5.) tells us, how from the same
series of quantities which one needs to have calculated in order to find the
value of the function K the value of K’ also immediately results.

Let us transform formula (3.). It is, as it is known:

1—k®@ 2Vk@) Kk 4k
; whence — =

!/
=1 1@ e
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Hence, if we substitute k?) for k again and again and take the square root, we
obtain:

Kk
Lx2n
o)
1
2)1(2 2
k2 k(2) ' { @
16k
Ko@) ¢ b [ KOO :
16k e} = 16k

NI
—N—
N
2|
N =
<X &
——

M=

»

'S
H,_J
NI
——
—_ | &
2| %
B =
< &
H,—/
|

T

whence having put r = 27 it is:

=) ) o)

Hence we see that from formula (3.) g = ¢ ¥ will be the limit of the expres-

®lw

1

3 KOk 17"
(mr\r _

{k } {16k(r)/} )

sion {%} " as p or r increases to infinity which is the theorem found by

Legendre.

And it is immediately clear from the formula we exhibited:

_ 1+ 1+gH1+g)1 448"
k_4¢q{ﬂ+ﬂxl+¢x1+fx1+f)”.}

that having neglected the quantities of order q" it will be:

Jknko
7=\ "16 -

which agrees with the mentioned theorem.

Now, in our formula:

1, 1-g\? [1-¢°
(A Sy i ey

=

1_q4 %
{1+¢}.”
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instead of ¢ let us successively put the following two series of quantities:

2ix 3 2ix 5 2ix 7 2ix

ge*, e, e, g,

qefZZx’ q36721x, q56721x’ q76721x’ L

and multiply the infinitely many terms. Recall the formula of § 36:

2Kx (14 2gcos2x + g?) (1 +2¢° cos 2x + ¢°) (1 + 2¢° cos 2x + g1%) - - -
Aam =—= = VK ,
T (1 —2qcos2x +q?)(1 — 243 cos2x + q°) (1 — 2g° cos 2x + g10) - - -

and let us denote the following expression by A(")

Aam 2rK(x () = \/W(l +2¢" cos 2x + ¢%) (1 4 2% cos 2x + ¢°7) (1 4+ 24°" cos 2x + 1) - - -
’ B (1—2g"cos2x + ¢%)(1 — 243 cos 2x + q°) (1 — 2¢°" cos 2x + g10r) - - -

it results:

1 (1 —2gcos2x +g%)(1 — 2¢° cos 2x + q°) (1 — 24° cos 2x + ¢'7) - - -

7

AMZAR)IA@EAB) S . .. (1—q)(1—-¢?)1—¢°)---]2

: 1
We determined the constant factor we added, =) A=) A=) from the

results found above or using that both expression for x = 0 become equal to 1.
But now we find:

o (2x) _ (1—2qc082x +¢*)(1 — 2¢° cos 2x + ¢°) (1 — 24° cos 2x +4") - --

0(0) =P —) ] '
whence:
0 () i

O0)  AMIAQIAGIAG T ...

Hence having put 27‘7}( = u, amu = ¢ and having recalled the formulas that
Legendre propounded on the transformation of the second order we obtain
the following theorem which yields a fast way to the calculate of the function
o.
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Theorem

Putamu = ¢, m =1, n =k, Alp) = \/mmcosch—l—nnsinzq) = A and
calculate the series of quantities

ml _ m + n m// _ m/ _|_ n/ m/// _ m// _|_ n//
2 7 2 7 2 7
n =+/mn, n' =vVm'n, n" = vm'"n",
A/ B AA + n/n/ A,/ B A/A/ _1__ 7’1”7’1// A/// B A//A// + n///n///
2A N 2N N 2N ’
it will be:

? FlE(o)—EL 1 1 1
O(u) {%WM {m}é m' % (m')8 [(m'" )7
g e g [— . _ . _ . _ ...
@(O) A AI A// AI//
We put aside the task to demonstrate this theorem and the consideration of

expansions by means of known and finite formulas because both is easily
done.

2.6 ON THE ADDITION OF ARGUMENTS BOTH OF THE PARAMETER
AND THE AMPLITUDE IN THE ELLIPTIC INTEGRALS OF THE FIRST
KIND

53.

We will obtain the fundamental formula in the analysis of the function ©,
which we will use very frequently in the following, from the following consid-
eration. For, because it was put:

u

k2 sin am a cos am aA am a sin am udu
H(u/ a) = 2 a2 s 2 ’
1 —k?sin“amasin“amamu
it is:
dTI(u,a)  k*sinamacosamaA amasin® am udu
du 1 — k2sinZamasin®amamu
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Having integrated this formula with respect to a from a = 0 to a = a, this
equation results:

(1.) / daM = —lln(l — k?sin? am sin am u).
0 da 2
But from (3.) § 52 it is:
dIT(u,a) 10 (u—a) 10 (u+a)
(2) du _Z(a)+§®(u—a) 20(u+ta)’

whence:

@ dll(u,a) ®() 1 1
=1 —=1 —a)— =1 1
/0 da T n®(0) 5 nO(u—a) 5 nO(u+a)+InOu),
having substituted which and going from logarithms to ordinary numbers
from (1.) one obtains :

O(u)O(a)
®(0)

2
(3.) O(u+a)O(u—a) = { } (1 — Kk?*sin”amasin®amu).

We can represent formula (2.) this way:

k? sin am a cos am aA am a sin% am u

1 — k2sinZamasin?amu 2

=Z(u)+ 1Z(u —a) — %Z(u +a),

whence having commuted a and u:

k% sin am u cos am uA am u sin? am a B

1 1
=Z(u)—=Z(u—a)— =Z(u-+a),
1 — k2sin?amasin®am u (1) 2 ( ) 2 ( )

having added which formulas this equation results:
(4.) Z(u)+ Z(a) — Z(u +a) = k* sinam usinam asinam(u + a),

which is for the addition of the function Z and agrees with formula (3.) of §
49:
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E(g) +E(x) — E(0) = k*sin ¢ sinasino.
Having put a = K, because it is seen that Z(K) = % =0, from (4.) this
equation results:
(5.) Z(u) — Z(u+ K) = k? sinam u sin coam u,
which we derived from the expansion of Z in § 47. Having put —u instead of
u and K — u = v, from formula (5.) we obtain:
(6.) Z(u) + Z(v) = k* sinam u sinam o.

Having putu =v = X itis2Z (§) =1-¥.
u

Let us integrate formula (5.) from u = 0 to u = u. Because itis [ Z(u)du =
0

In ggg; , this equation results:
O(u) O(u+K)
In ®(0) In oK) InAamu
or:
0(0) O(u+K) _ Aamai

7.
7 e e
Having put u = —K from (7.) we find the value of:

whence (7.) takes on the form:

O(u+K) Aamu
©) Tew T

We easily confirm formula (9.) from the found expansion:

O (Er)  (1-2gcos2x +g%)(1 —24%cos2x + q°) (1 — 24° cos2x + ¢'0) - - -

T —

e() (=91 =g (A =¢°)---

For, having changed x to x + 7 it is:
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G (2K7x —|—K) e —|—2qcos2x—|—q2)(1 —|—2q3c052x+q6)(1 —|—2q5c052x+q10) .

®0) [(T=g)( =) (A =g°)---]? '
whence
O (22 +K)  (1+42gcos2x + %) (1 + 24° cos 2x + ¢°) (1 +2¢° cos 2x + ') - - -
© (&x) (1 —2gcos2x +¢%)(1 —2¢%cos2x + q°) (1 — 24° cos 2x + 1) - - -/
which expression we in § 35 found to be = Aa\r;;% as is has to be.

From formula (9.) we immediately reduce the expressions IT(u + K, a), IT(u, a +
K) to I1(u,a). For, it is:

B 1. O(u+K—a)
(10)  T(u+Ka) = (u+K)zZ(@) + 5Ingr
1. Ou—a) 1. Aam(u—a)
(u+K) (a)+2n®(u+a)+2nAam(u+a)
1. Aam(u —a)
(u a)—l—KZ(a)—f—Elnm
_ 1. ©(u—a—K)
() Twa+K) =uZ(a+K)+3Inge — 5
:uZ(a)—kzsinamasincoama-u—l—%ln E a;‘i‘; m
= IT(u,a) — k* sinam a sin coam a - u—i—ll Aam(u —a)
Aam(u +a)

54.

From the fundamental formula, by means of which the function IT is defined
by Z, ©:

L.  II(u,a)=uZ(a)+ %ln m,

and having recalled the following fundamental formulas in the analysis of the
functions Z, ©:
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II. Z(u)+ Z(a) — Z(u+a) = k* sinamasinam uam(u + a)

2
@(g))(ﬁ(;))(ll)} (1— k? sin? am a sin® am M),

III. Ou+a)O(u—a) = {
one now easily obtains formulas both for expressing I'l(u + v,a) by means of
IT(u,a), I1(v,a), which we will call the theorem on the addition of the argument
of the amplitude, and for expressing I1(u, a + b) by means of I1(u,a), I1(u,b),
which we will call the theorem onthe addition of the arqument of the parameter.
For this purpose, we add the following remarks.

From the formulas:

I1(u,a) =uZ(a) + %ln SEZIZ;
I1(v,a) =vZ(a) + %ln SEZ—T—Z;
II(u+v,a) = (u+v)Z(a) + éln®(u+v_a)®(u—l—v+a)

it follows:

O(u—a)O(v—a)®(u+v+a)
Ou+a)®v+a)®(u+v—a)

(1.) I(u,a)+11(v,a) —11(u+0v,a) = %ln

The expression contained in the logarithm:
Ou—a)®(v—a)®(u+v+a)
Ou+a)®(v+a)®(u+v—a)

can be reduced to elliptic functions by means of fundamental theorem (III.)
in two ways. For, firstly from the theorem it is:
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O(u—a)®(v—a) = {@)(L‘Zl’)g)(é)”gv —a)} : (1—kzsin2am (u;v) k? sin? am <u—2i—v
u—ov u—+v 2

@(qua)@(UJra):{@(z)@@(é)*‘ —0—11)} ,(1kzsinzam(u;v>k25in2am(u—zi_v
ute uto g ? u+ov u+o

@(u—i—v—a)@(a):{@( s )G?(é)z )} -(l—kzsinzam< —zi_ )k2sin2am< ;
u+v u+v 2

O(u+v+a)O( ):{®(;)C§9((§)J£+a)} -(1kzsinzam(u—z'—v>kZszam(u—z’_v

after having multiplied the first and the fourth and having divided by the
second and the third of which formulas it results:

) Ou—a)®(v—a)O(u+uv+a)
(2) Ou+a)®(v+a)O(u+v—a)

{l—k251n am( > )smzam(“H— )}{1 k? sin? am (%) sjnZam(m+a)}

{1—kzs1n am (42 )smzam(”“’—i—a)}{l—kzsm am (442 )smzam(“;”—a)}'

Hence, which is the other way, where fundamental theorem (III.) is repre-
sented as this:

{ O(u)0(v) }2 O+ 0)0(u—0)
- 1-—Ksinfamusin?amo’

it is:

Ou—a)®(v—a))> Ou—v)0(u+v—2a
1 — k2sin? am(u — a) sin® am
2_ O(u—v)0(u+ov+2a
1 — k2sin®am(u + a) sin® am

{ |
i@(a)@(u—kva)iz B O(u+0v)O(u+v—2a)
{ |

~—

—~

v—a)

~—

—~

v+a)

1 — k2sin? am(a) sin® am(u + v — a)
O(u +v)O(u + v + 2a)

"~ 1—k2sinam(a) sinam(u + v +a)’
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after again having multiplied the first and the fourth by each other and having
divided by the second and the third of which formulas and taken the square
root it results:

O(u—a)O(v—a)O(u+v+a)
Ou+a)®(v+a)®(u+v—a)

(3.)

|1 —K¥sin*am(u + a) sin? am (v + a)][1 — k2 sin? amasin® am(u + v — a)]
[1 - kZsin?am(u — a) sin®?am(v — a)][1 — k2 sin*am asin® am(u + v +a)]

To see from the elements, how the one of the expressions (2.),(3.) can be
transformed into the other, I mention the following.

If in the formula, already frequently used,

2 2

amu — sin“am o

1—k2amusin?amov

sin

sinam(u + v) sinam(u — v) =

one puts u + v, u — v instead of u, v, respectively, it results:

sin? Zam(u — )
Zam(u —v)’

, _ am(u +v) — sin
sinam 2u sinam 2v =

1 — k2 sin®am(u + v) sin

Further, we gave the formula:

5 4 sinam 1 cosam uA am 1 sinam v cos am vA am v

2 am(u—v) = 5

sin® am(u +v) — sin ,

[1 — k2 sin? am u sin® am v]2

whence after the multiplication we obtain:

4 sinam u cosam u/A am u sinam v cos am vA am v

(4) 1—k*sin®am(u + v)sin®am(u —v) = 5

sinam 2u sin am 20[1 — k2 sin? am u sin® am v}2

[1 — k?sin*am u][1 — k? sin* am v]
2

[1 — k2 sin® am u sin? am ]2

by means of which formula the one of the formulas (2.), (3.) can now easily
be deduced from the other.

From formula (4.) one can also deduce this more general one:

[1 — k? sin? am u sin”* am v][1 — k? sin® am u’ sin® am v']

2

(5.)

2

[1 — k2sin® am u sin? am 1/][1 — k2 sin? am v sin® am ¢/
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B \/[1 — k2sin® am(u + u') sin® am(u — u')][1 — k2 sin® am (v + v/) sin® am (v — v')]
= 2

[1 — Kk2sin®am(u + v) sin?am(u — v)][1 — k2 sin® am(u/ + v') sin® am(u/ — v')]

But Legendre when he treated the addition of the argument of the amplitude
(cap. XVI. Comparison des fonctions elliptiques de la troisieme espece) exhibited the
quantity which the argument of the logarithm in this form:

1 — k?sinama sinam u sinam vsinam(u + v — a)

1—k?sinamasinamu sinamovsinam(u + v +a)’

which is not obvious at first sight how it coincides with the expressions (2.)
and (3.) we found. The rather intricate transformation is done this way.

From the elementary formula we have already used very frequently it is:

sinamusinamov =

sinamasinam(u+v —a) =

having multiplied them by each other, it results:

{1 — k% sin% am <uz+v> sin”am (u ; v) } {1 — k?sin? am <u2+v> sin® am (u—zi—v — a> }

X {1 - kzsinamusinamvsinam(u +v— a)}

={1—Kk?sin’am uto sin® am S 1 — k?sin®am uto sin® am u+v_a
2 2 2 2
—K? {sin2 am (u ; v) sin® am — (u ; U) } {sim2 am (u ; U) — sin?am <u ; v_ a) }
The other side of the equation having deleted the terms cancelling each other
— k?sin?am uto sin® am n-v + sin?am u+v_a
2 2 2
+ k% sin? am <L[;—Z)) {sin2 am (T) +sinam <u —; v_ a> }

180



is:

1+ k*sin*am (u+

Y sin® am w-o sin® am uro —a
2 2 2
u+v U—7\ ., u+ov
—k?sin* am 2 gin? am sin“am —a
2 2
2 2 2 U—0\ . o u+v
1 — k?sin*am 1 — k“sin“am > sin“ am > —a ,

whence it finally arises:

1 — k?sin? am (“Jz”’) sinZam (%)

1 — k2sin*am (“;”)

(6.)

{1—K*sinamasinamusinamosinam(u +v —a)}

— k%sinam (%2) sin?am (52 +a)

2
"~ 1-—K2sinam (%) sinZ am (”T“’ + a) ’

whence after a division:

1 —k?sinamasinamusinamovsinam(u + v — a)

(7.)

1 Rsinam (*5%) sinam (452 —a) 1 sin’am (“47) sinam (47 + a)

T 1 K2sin? am (“52) sin®am (42 +a) 1—K2sin?am (“42) sin®am (42 —a)’

1+ k?sinamasinam usinamovsinam(u + v + a)

which is transformation in question of the expression propounded by Legen-
dre into expression (2.).

Formula (6.) having put u, 4, v instead of ¥52, “32, 12 — 4 can also be

represented this way:

(8.) 1 —k*sinam(a + u) sinam(a — u) sinam(a + v) sinam(a — v)

[1 — k*sin*ama][1 — k? sin? am u sin®

2

am v
2

- [1 — k2sin? am a sin® am u][1 — k2 sin? am a sin? am v]’

whence formula (4.) follows as a special case having put u = v.
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55.
From the formulas (1.), (2.), (3.), (7.) of the preceding § it follows:

(1.) IT(u,a

)
{l—kzsmzam(” v uto )}{1—k25m am( )smzam

1

2N

_ lln [1 — k2 sin?am(u 4 a) sin? am(v + a)][1 — k? sinam a sin? am(u + v — a)]
4 [1-k2sin?am(u — a)sin®>am(v — a)][1 — k2 sin® am a sin am (u + v + a)]
1

2

) (2" = e (432 +a

{1—K2sin*am (“52) sinam (£ +a) } {1 — k2sin® am (“}?) sin® am (“}2 —a
)
)

1 — k?sinam a sinam u sinam v sinam(u + v — a)

1+ k?sinamasinamu sinamvsinam(u + v +a)’

which is the theorem on the addition of the argument of the amplitude. Further,

by the same method one can investigate the other formula for the addition

of the argument of the parameter, but by means of the other theorem on the

reduction of the parameter to the amplitude, which formula (4.) § 52 gave us:
(IV.) IT(u,a) —Tl(a,u) =uZ(a) —aZ(u),

the same follows immediately from formula (1.). For, from (IV.) it is:

whence:

IT(u,a) +T1(u,b) —11(u,a + b)
=I1(a,u) +11(b,u) —II(a+b,u) +ulZ(a) + Z(b) — Z(a +b)],

or because from (1.) it is:

1. 1—k?sinamusinamasinambsinam(a+b — u)
I 11 b, —1II b, - 71 . . . P 7
(a,u) +T1(b,u) (a+b,u) 2 "1+ Ksinamusinama sinambsinam(a + b + u)
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further, because from (IL.) it is:
Z(a) + Z(b) — Z(a + b) = k* sinam asinam bsinam(a + b),
it is:

(2.) IT(u,a) +I1(u,b) — I1(u,a + b)

1 —k?*sinam usinamasinambsinam(a + b — u)

= k*si i bsi b)-u+-1
sinama sinam b sinam(a +b) “ta n1—|—k2sinamusinamasinambsinam(a+b+u),

which is the theorem in question on the addition of the argument of the
parameter.

We will find other equally remarkable formulas by the following consideration.
For, from theorem (IIL.) it follows:

O(u—a)®w—-b)1> Ou+v—a—b)Ou—v—a+b)
{ ©(0) } T 1- K2sin am(u — a) sin?am(v — b)
{@(u+a)@(v+b)}2 Ot v+a+b)®u—v+a—b)

©(0) 11— K2sinam(u 4 a) sin? am(v + b)’

Now, from theorem (I.) it will be:

I1(u,a) +I1(v,b) = uZ/a) +vZ(b) + %ln g(

IM(u+v,a+b)+1I(u—v,a—0)
Ou+v—a—bO(u—v—a+b)
Ou+v+a+b)@u—v+a—>)

=(u+v)Z(a+b)+ (u—0v)Z(a—"b)+ éln

whence:

(3.) IM(u+v,a+b)+11(u—v,a —b) —2I1(u,a) — 2I1(v,b)

1. 1—k*sin®?am(u — a) sin? am(v — b)
=(u+v)Z(a+b)+(u—v)Z(a—b) —2uzZ(a) —2vZ(b) + -1 ,
(ut2)2(a+b) + (u—v)2(a—b) —2uZ(a) —202(b) 2 nl—kzsinzam(u—|—a)sin2am(v—|—b)

or because it is:
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Z(a) 4+ Z(b) — Z(a+b) = +k*sinam asinam bsinam(a + b)
Z(a) — Z(b) — Z(a — b) = —k*sinamasinam bsinam(a — b),

it will be:
(4.) IM(u+v,a+b)+11(u—v,a—b)—2I1(u,a) — 2I1(v, b)
= —k*sinamasinam b[sinam(a 4 b) - (u 4+ v) —sinam(a — b) - (u — )]

)
)

1, 1—k*sinam(u —a)sin’am(v —b
+21In
2 1—k2sin?am(u +a) sinam(v + b

Having interchanged u and v we obtain:

(5.) IM(u+v,a+b)—11(u—v,a—b)—211(v,a) — 2I1(u,b)

) —
= —k*sinamasinamb[sinam(a + b) - (u + v) + sinam(a — b) - (u — v)]
1. 1—Kk?sinam(v —a)sin?am(u — b)

+>1In
21— k2sin?am(v +a) sin®am(u + b)’

Having added (4.) and (5.) we obtain:

(6.) (u+v,a+b)—II(u—v,a—0b)—2I1(v,a) — 2I1(u,b)

= —k*sinamasinambsinam(a +b) - (u + v)

_’_1 In { 1 — k2 sin2 am(u — g) Sinz am(v _ b) ‘ 1—Kk2 Sil’lz am(v o a) sinz am(u B b) }
4 1—k?sin®am(u + a) sin’am(v +b) 1 —k?sin®am(v +a) sin®am(u +b) J °

Having put v = 0 from (4.), (5.) it results:

(7.) I[I(u,a+b)+11(u,a—0b)—2I1(u,a)

1, 1—k*sin>ambsin®am(u —a)

—k?sinam asinam b[sinam(a +b) —sinam(a — b)]u + 5 In |~ K sin?am bsin® am(u £ a)

(8.) I(u,a+b)—11(u,a—b) — 2I1(u,b)

1 1—k2 s 2 s 2 -
—k?sinam a sinam b[sinam(a +b) —sinam(a — b)]u+ = In sin”amasin”am(u — b)

2 1-k2sin?amasin®am(u +b)

Having put b = 0, from (4.), (5.) these equations result:
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2

1, 1-Ksinamosi
(9.) I(u+o,a)+11(u—v,a) —2I1(u,a) = < In o amosm am(
21— k%sin®amvsin® am(
1. 1— K sin?am usin?
(10)  TI(u-+0,0) — TI(s — v,a) —20(0,) = 3 In Lk S0 amusin_ am(
21— k%sin®amusin” am(

2.7 REDUCTIONS OF THE EXPRESSIONS Z (iu), ®(iu) TO A REAL
ARGUMENT. THE GENERAL REDUCTION OF ELLIPTIC INTEGRALS
OF THE THIRD KIND, IN WHICH THE ARGUMENTS BOTH OF THE
AMPLITUDE AND THE PARAMETER ARE IMAGINARY

56.

We return to the analysis of the functions Z, ® whose extraordinary use
we demonstrated in the preceding paragraphs. Let the reduction of the
expressions Z(iu), ©(iu) to a real argument be in question. We pursue the
same at first using Legendre’s notation, then we will use our notation.

We know from the elements, § 19, that the following equations hold:

‘ d id , /
sing ==itan¥, A&Z) = @(llptpk’)' F(g) = iF(y, k).

Hence it is:

idyp(1+kktan?¢)  idpA(yp, k')
A, k)  cos?y

dA(p) =

whence after an integration:

¢ /1.1
/A( )dg = i {tan¢A ¥,k +/kAk ;H;{,)l’bdlp}
0

or:

(1) E(g) = iftanpA(p, k') + F(y, k') — E(p,K')].
By multiplying by % = % and by integration we find:

D'J

¢ ¢ /
(2.) /Ai lnCOSlP—;{F(¢/k/)}2+/igl£:i,§d¢-
0 0
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From equation (1.) it follows:

FPE@IEF®) _ prian(y) sty ) — [FE(p,K) - (B~ F)F(p, )]

Now, note the extraordinary theorem due to Legendre (pag. 61):

7T

PIEI(kI) + FI(k/)EI o FIFI(k/) — E/

whence it follows:

L /
ﬂﬂwyﬂ%ﬁ—ﬂWWkﬁ=pQJPWEWWU—PWWWJM+@§$?,
and hence:

) FE@—EFW@) _ o ry - EEEWK) —ERIE@pK)  nF(yK)

iF!

In our notation it was:

FI(K") ~ 2FIF(K)

¢ =am(iu), ¥ =am(u k'), E(p)=iu, F(pk')=u;

further,

F'E(p) —E'F(¢) _ . F'(K)E(y,K') — E'(K)E(p, k') _ :
fal = Z(lu,k)r Fl(k/) = Z(u,k ),

whence equation (3.) is also represented this way:

4)  iZ(iuk) = — tanam(u, ')A, k') + % + Z(u, k).

Hence by integration this equation follows:

/iduZ(iu, k) = Incosam(u, k') + % + / Z(u,k")du,
0 0
s e
or, because it is ;' duZ(u) = In ®Eg§:
@(iu, k) iU @(u, k/)

= ek’ cosam(u, k')

) B8 ®(0, k)"

Formulas (4.), (5.) reduce the functions Z(iu), ®(iu) to a real argument.
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57.

In (5.) of the preceding § change u into u + 2K/, it results:

. ! m(u /)2
QUL EK) _ 3 cosam(u, )

or having put u instead of iu:

(K —iu)

(1.) O(u+2iK) =—e © O(u).
In (5.) of the preceding § put u + K’ instead of u: Because it is:

ksinam(u, k'
Iy ’
cosam(u + K, k') = Aam(u, K
/
@(u+K’,k’) — M@(u,k'),

vk

confer § 53 (9.), this gives us the equations:

O(iu +iK’) m(utK!)2 , O(u, k)
—e0) = —¢ KK \/%smam(u,k’)@(ol )
(2u+K' )2 O(iu)

— _p i \/Iztanam(u,k/) RIOK

whence having put u instead of iu again it is:

(2)  Ou+iK) = ie™“5™ \/k sinam u®(u).

Having taken logarithms and by differentiating from (1.) and (2.) these
equations result:

(3)  Z(u+2iK') = % +Z(u)
(4) Zu+iK') = %—i—cotamuAamu—kZ(u).

Having put u = 0 from (1.) — (4.) it follows:
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O2iK) = ¥ O(0), ©O(K') =0
(5.) i
Z(2iK') = % Z(iK') = oo
Formulas (1.), (2.) are confirmed using the infinite products into which we
expanded the function ©:

(6) ®(%) (1 —2gcos2x +¢?)(1 —24% cos 2x + 4°) (1 — 2¢° cos 2x + ¢10) - - -
' e0) [(1=g)A=¢g)A=¢°) -]

[( q621x)( q382ix)( q5621x) A ][(1 _ qeiZix)( qSeszx)( qSeszx) ..

[(1=g) A=) =¢°) -]

”TK having done which ¢/* goes over into ge'* the

For, if x is changed into x +
product:

[(1 o quix)( q3 sz)( q5 sz) . ][(1 . q672ix)(1 . q3672ix)(1 . q5€72ix> . ]

goes over into this one:

; [(1 _ quix)( q3621x)( q5621X) . H(l _ qe—Zix)(l _q3e—2ix)(1 qSe—sz) . ‘],

quIx
whence:
2Kx 0 (&)
(7.) @) < + 2i K’) ng .

On the other hand, having changed x into x + ZX, ¢* goes over into ./ge’™,
g g 21< g q

whence the product:

[(1 _ q€2ix)( 5]3 21x)( 5]5 21x) . ][(1 _ qe—Zix)(l _q3e—2ix)(1 q5 —sz) . ]

goes over into this one:

(1 _ efzix>[( q2621x)( q4621x) . ][(1 _ qzefzix>(1 _ q4672ix) . ]
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i .
= -2sinx(1 — 2¢° cos 2x + ¢*) (1 — 24* cos 2x + ¢°) (1 — 2¢° cos 2x + ¢'?) - - -

But in § 36 we gave the formula:

. 2Kx 1 2y/qsinx(1 —2q% cos 2x + g*) (1 — 2q* cos 2x + q®) - - -
smam == Vk (1 —=2gcos2x +¢?)(1 — 243 cos2x + q°) (1 — 245 cos 2x + q10) - - -

whence we see that it will be:

(8) o &-I-ZK/ :i k sinam '
7T Welx

But, formulas (7.), (8.) having put 2% = u agree with formulas (1.), (2.)

o (4

From formula (9.) § 53:

Aamu
O(u+K) = -O(u),
(1) = 5250
having put iu instead of u, it follows:
, Aam(u, k') .
O(iu+K) = -O(iu),
( ) VK cosam(u, k') (i)
whence from (5.) of § 56:
@(zu + K) 1 T / @(M, k/)
= N k) -
®(0) \/y€41<1< am(u, ) ®(0/ k’)
or from the aforementioned formula (9.) § 53:
: ! 1./
9) O(iu + K) _ Ee%®(u+l<,k).
©(0) K O(0,k)

Hence by taking logarithms and differentiating them we obtain:

U

(10.) iZ(iu+K) = TR

+Z(u+K,K).

58.

The formulas found in §§ 56 and 57 have a simple application to the analysis
of the functions IT in the cases in which the arguments either of the amplitude
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or of the parameter or even of both are imaginary.

At first, let us demonstrate that the expression IT(u,a + iK") can be reduced

to I1(u,a) whence it is clear that having put n = —k?sin” ama the integrals:
[t |z
" (1+nsin’ ¢)A(p)’ 5 (1+ R sin? (p) A(o)

depend on each other; this is an extraordinary theorem stated by Legendre in
cap. XV.

We found:
(0 +iK') = uZ(a+iK') 4 +1n 284 +HK)
’ B 2 Oa+u+ikK')
But from (2.), (4.) of § 57 it is:

O(a—u+iK') B sinam(a —u) O(a—u)

O(a+u+iK') sinam(a —u) ©O(a+u)

uZ(a+iK') = —1271—1? +ucotamaAama + uZ(a),

whence, since the terms 7%, — 7% cancel, it is:

, 1. si -
(1.) [1(u,a+ iK') :H(u,a)+ucotamaAama+Zlnm.

Let us put ia instead of a in this formula, it is:

—iAam(a.k’)

tamiaAamia =
cotamiaA amia sinam(a, k') cosam(a, k')

sinam(ia —u) Aamu — cotamiaAamiatanamu

sinam(ia +u)  Aamu + cotamiaA amiatanamu’

or having for the sake of brevity put :

Aam(a, k')
sinam(a, k') cosam(a, k')

=V,

it is:
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sinam(ia —u)  Aamu+iy/atanamu
sinam(ia +u) Aamu —iy/atanamu’

whence (1.) goes over into:

[y ia 4 iK"Y — TT(1 i
(u,ia+1i ) (u,ia) .+ arctan Vatanamu
1 Aamu

(2.)

which agrees with formula (f’) exhibited by Legendre.

59.

We obtain other formulas, fundamental for the reduction of an imaginary
argument to a real one, from (9.), (10.). First, I mention that one of those
by means of which imaginary arguments of both the amplitude and the
parameter are reduced to real arguments

(1)  Il(iu,ia+K) = I(u,a + K, k),
which is demonstrated this way. For, it is:

. o 1. Ofia—iu+K)
[1(iu,ia + K) = iuZ(ia + K) + 5 In OlatiutK)

further, from (10.) § 57 it:

iuZ(ia + K) = % +uZ(a+K,K),
from (9.) § 57 it is:
O(ia — iu + K) _ keﬂiz(u/)z Oa—u+K,K)
0(0,k) VK 0(0,k)
O(ia+iu +K) Ee”f,?,f?z O(a+u+K,K)
0(0,k) VK O(0,k) ’

whence it is:

O(ia —iu + K) eﬁ(@(a—u—l—K’,k’)

@(ia + iu + K) O(a+u+K,K)
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and hence cancelling the terms 724, —J2%; it is:

O(a—u+K, K
O(a+u+ K, k)

1
H(iu,ia+K):uZ(a+K/,k’)+§ln =Il(u,a+K,K),

which was to be demonstrated.

Having changed a to —ia in (1.) it results:

(2)  II(iu,a+K) = —I1(u,ia + K, K').

Formula (1.) is also easily proved considering the integral by means of which
we defined the function IT:
r; 2

k% sinam a cos am aA am a sin® am u
H(u,ﬂ) - du/

1 —k2sin®amasin®amu

whence it is:

u
T(iu,ia + K) = /
0

ik? sinam(ia + K) cosam(ia + K)A am(ia + K) sin? am iu i

1 — k2 sin? am(ia + K) sin® am u

For, from the formulas of § 19 it is:

A ! A K, K
sinam(ia + K) = + sincoamia = coarz(a,k) = am(ak+ k)
) ) _ 'k/ 1/
cosam(ia + K) = — coscoamia = L cos coam(a, k') = % cosam(a + K, k")
Aam(ia+K) = Acoamia = k'sincoam(a,k') =k sinam(a+ K, k'),

whence it is:
+ ikk sinam(ia + K) - cosam(ia + K) - Aam(ia + K)
= —k'k'sinam(a + K, k') cosam(a + K, k') Aam(a + K', K').

Further, it is:
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sin® am iu B —tan? am(u, k')
1 —k2sin?am(ia + K)sinamiu 1+ Aam(a+ K/, k') tan? am(u, k')
—sin?am(u, k') B —sin?am(u, k')

"~ cos? am(u, k') + A2am(a + K', k') sin?am(u, k') 1 — k'K’ sin?am(a + K’, k') sin® am (u, k')’

whence it is:

u
I (iu, ia +K) = /
0

k'K sinam(a + K, k") cosam(a + K', k')A am(a + K', k') sin® am (u, k)

du,
1 — k'K’ sin? am(a + K’, k') sin? am (u, k) !

or:

[(iu,ia + K) = (u,a + K, k'),
what was to be proved.
From formulas (9.), (10.) of § 57 in the same way as (1.) we can prove the
following formula which tells us that two functions of an imaginary argument

of the parameter of which the one is the complement of the other modulus
can be reduced to each other:

(3.)  ill(uia+K)+ill(a,iu+K,K) = 27;”; Y uZ(a+K,K)+aZ(u+Kk).
For, it is:
. ok
ill(u,ia+K) =iuZ(ia+K) + ilnw

(
2 O(ia+K+u)
- - |, Ol K —a )
11 K,K) =iaZ K,K)+ 21 '
ill(a,iu + K', k') = iaZ(iu + fk)+2n®(iu+l<’+a,k’)

Now it is:
O(ia+K—u) O(i(a+iu) +K) Een(m»;)z O(a+iu+K, k)
0(0) B ©(0) VK ©(0,k)
O(ia+K+u) O(i(a—iu) +K) Een(&?pz O(a—iu+K,K)
©(0) B ©(0) VK ©(0,k)
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whence because it is @(u + K) = ©(K — u) it also is:

O(ia+ K —u) iz ©(iu + K' 4 a, k')

OlatK+u) - OUutK —ak)

and hence:

i, O(a+K—u) i O@Gu+K —alkl) mau

2" OGa+Ktu) 2 @tk +ak) 2KK
Further, it is:

tau

iuZ(in+K) = ZKK/+MZ(L1+K/,k/)
iaZ (iu+ K, K') = % +aZ(u+Kk),
whence:
i1, ia + K) + il1(a, iu + K/, K') = 27;‘1;, +uZ(a+K,K)+aZ(u+Kk),
Q.D.E.
60.

It is clear from the formulas:

sinam (K + iu) = %A coam(u, k")

sinam(u + iK') = L #,
k sinamu

that the argument u which as sinam u increases from 0 to 1 increases from

0 to K, if sinam u goes over from 1 to }, takes on an imaginary value of the

form K + iv such that at the same time v increases from 0 to K’; after this,

while sin am u increases from % to oo, u takes on the form v + iK’ such that at

the same time v decreases from K to 0.

Hence we see that, if in the elliptic integrals of the third kind, which is
contained in this scheme:

J—
/ (1—|—nsin2(p)A(q0)'
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one puts, as we did, n = — sin®sin?ama, if n is negative number

between +0 and —kk, onehastoput n= —k?*sin®ama
between —kk and —1, onehastoput n= —k? sin? am(ia + K)
between —1 and —oo, onehastoput n= —k*sin’am(a+iK’),

while a denotes a real quantity. Further, because it is —kksin®amia =
kk tan tan? am(a, k'), it is clear, if n is an arbitrary positive number, that one
has to put:

n = —kksin? amia.

Hence we obtained four classes of elliptic integrals of the third kind corre-
sponding to the schemes which take on the following arguments:

(1) a, 2) ia+K, 3) a+iK, 4) ia,
of which the first three correspond to a negative 7, the fourth to a positive 7.

But, from formula (1.) of § 58 we see that the function IT(u,a + iK’) can be
reduced to IT(u,a), or the third class, in which 7 lies between —1 and —ov,
can be reduced to the first, in which n lies between 0 and —kk. Further, from
formula (11.) of § 53 we see that the function IT(u, ia) can always be reduced
to I'T(u, ia 4+ K) or the fourth class in which 7 is positive can be reduced to the
second in which 7 is negative between —kk and —1. Hence we now obtained
the theorem that the propounded integral:

¢

[ it
/ (1 + nsin® @)A(p)’

whatever real positive or negative number n is, can always be reduced to a similar
integral in which n is negative and lies between 0 and 1. This is the extraordinary
discovery of Legendre.

But now let us consider the general case in which both the amplitude and the
parameter have an arbitrary imaginary form: It is clear that this case contains
the expression:
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IT(u + iv,a +ib),

u, v, a, b denoting real numbers. But from the formulas of § 55 we see that an
expression of such a kind can be reduced to these four:

1) TI(u,a), 2) [Il(iv,ib), 3) TII(u,ib), 4) TI(iv,a),

or, if it pleases, to these four:

1) II(u,a—K), 2) Il(iv,ib+K), 3) II(u,ib+K), 4) TIlI(iv,a—K).

For, in general the expression II(u + v,a + b) reduces to II(u,a), I1(v,b),
I1(u,b), I1(v,a) from which the four propounded formulas result, if one puts
iv instead of v, but a — K, K + ib instead of a,b, respectively. Further, from the
formulas (1.), (2.) of § 59 it follows:

I1(iv,ib + K) = +11(v,b + K, k')
I(iv,a — K) = —TII(v,ia + K, k'),

whence expressions 1), 2) reduce to the first class I1(u,a), the expressions 3),
4) reduce to the second class I1(u, ia + K); this gives us the following

Theorem

The propounded integral of the form

¢
e
/ (1 + nsin® @)A(p)’
whatever n and ¢ are, either real or imaginary, can be reduced to similar integrals in
which ¢ is real and n is real and lies between 0 and —1.

This theorem is also due to Legendre except that he considered only real
amplitudes.

By means of formulas (4.), (5.) of § 55 IT(u +v,a+b) +1I(u —v,a — D) is
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reduced to I1(u,a) and I1(v,b), I1(u +v,a +b) — I[1(u — v,a — b) is reduced
to I'I(u, b) and I1(v,a). Hence it is clear that having put:

IT(u+iv,a+ib) + (u —iv,a —ib) =L,
IT(u+iv,a+ib) — II(u — iv,a — ib)
i
L depends on the functions Il(u,a — K), I1(iv,ib + K), M depends on the

functions IT(u,ib + K), I1(iv,a — K) and hence L reduces to the first class, M
reduces to the second class.

M,

These are the foundations of the theory of the elliptic integrals of the third
kind, deduced from new principles. We will see others below.

2.8 ELLIPTIC FUNCTIONS ARE RATIONAL FUNCTIONS. ON THE
FUNCTIONS H, ® WHICH CONSTITUTE THE NUMERATOR AND THE
DENOMINATOR, RESPECTIVELY.

61.

The expansions exhibited in § 35 reveal the genuine nature of elliptic functions,
of course that they are rational functions, and, as we already know from the
elements, that they vanish and become infinite for innumerable different
values of the argument. We have already been led to the function constituting
the denominator of the fraction, into which we expanded it

2kx 1 2ygsinx(1—2¢*cos2x 4 g*)(1 —2g* cos 2x + 4%) (1 — 24° cos 2x + g'2) - - -

smam == = N (1 —2gcos2x +¢?)(1 —2¢% cos 2x + q°) (1 — 2¢° cos 2x + ¢10) - - -

in the preceding paragraphs, I mean the function:
o (2K1) _ (1—2qc082x +4?)(1 — 2q° cos 2x +¢°) (1 — 24° cos 2x +4') - - -
0(0) (1-9)1-¢)1—-¢°)(1—q7)---]?
Now, let us also denote the numerator by a particular character, and let us
put:

H(3¥)  2ygsinx(1 —2¢%cos2x +¢*) (1 —2¢* cos 2x + %) (1 — 2¢° cos 2x +¢2) - --

7T

©(0) (- =) -g*)(1—q7)---
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it will be:

2Kx
sinam%— LG

T Vk @ (XK

Recalling the expansions given in § 36, we find:

21<x_\/§H(2§(x+§))

cosam7— @(%)
pam 2 _p @G 13)
m © (%)

: 2Kx 4 se el
whence having put == = u it is:

. 1 H(u) \/P H(u +K)
1.) sinamu = — -——=; cosamu =4/ — ———2; Aamu=Vk ———2
(1) Vk O(u) k  O(u)
Hence these special formulas follow:
2) oK) =20, HK) = te
. = =\
Having put H'(u) = d%“) , because it is:

H'(u) = Vkcosamu Aamu®(u) + Vksinamu @' (u),

for the values u = 0, u = K we obtain:

(3.) H'(0) = VkO(0) = ——2—~; H'(K) = Vk@'(K) = 0.

From (2.) it also follows:

Moreover, it is:



From formula (2.) of § 57:

(K —2iu)

O(u+iK') =ie ®  Vksinamu O(u)
it follows:

(K —2iu)

(7)  O(u+iK')=ie & H(u).

Having changed u into u + iK' in this formula and recalled (1.) of § 57:

(K —iu)

8)  Ou+2K)=—e & O(u),
this equation results:

9)  H(u+iK) =ie" %" 0u),

whence, having again changed u to u + iK', from (7.) it is:

(K —iu)
K

(10.)  H(u+2iK') = —e H(u).

From the formulas (7.) — (10.) one can derive the more general ones:

(1) es0u) = (—1)"e™ % 0 (u + 2miK')
(12) e H(u) = (—1)"e™ 5" H(u + 2miK')
(13.)  ewx H(u) = (—i)zm“e%};l)mﬁa(u + (2m +1)iK’)
(14)  emo(u) = (=2 ™ 5™ H(u+ 2m + 1)iK)

From (12.), (13.) it is:

(15)  ©(2m+1)iK) =0,  H(2miK') = 0.
Formulas (5.), (6.) show that the functions ©(u), H(u) having changed u to
u + 4K, formulas (11.), (12.) that the functions
6%6(11), e%H(u),

having changed u into u + 4iK’, remain unchanged; hence these have the real
period in common with the elliptic functions, those have the other imaginary
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period in common with the elliptic functions.

From formula (5.) § 56:

O(iu k)  xm N O(u, k')
00,8 ek’ cosam (u, k )@)(O,k’)
it follows:
H(iu,k) , O k) . aw : N O(u, k')
00,0 Vksinam (iu, k) 00,5 iekk’ \/k sin am (1, k )G)(O,k’)’

whence from (1.) it is:

O(iu, k) \/? . H(u+ K/, K)
1) Bon ~ V'™ ~enr)

H(iu, k) \F o H (1K)
7)) B ~ V™ 80,6

From (16.) having changed u to iu and commuted k and k' it follows:

. /
ay  Hn | E o)
®(0,k) K" 00,1)

to which we add (9.) § 57:

. .
(o) QUKD _ [k O+ K, K)
©(0,k) K (0, k)

From the formula found above:

02 (u)®%(v)
©2(0)

2

O(u+0)0u—0) = (1 — k*sin? am u sin? am )

it follows:

©*(u)©*(0) — H*(u)H?(v)
©2(0)

(20.) O(u+0)0(u—v) =

Having multiplied the formula by:

ksinamu —ksinamov _ H?(u)®?(v) — @(u)H?(0v)
1—K2sinamusinamov  ©%(1)0?(v) — H*(u)H?(v)’

ksinam(u +v) sinam(u —v) =
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it results:

H?(u)©?(v) — ©(u)H? (v)

(21.) Hu+v)H(u—v) = 02(0)

2.9 ON THE EXPANSION OF THE FUNCTIONS H, ® INTO SERIES. THE
THIRD EXPANSION OF THE ELLIPTIC FUNCTIONS.

62.

Let us expand the functions:

2k
© <7x) _ (1—2gcos2x +¢%)(1 —2¢° cos 2x + 4°) (1 — 24° cos 2x + ¢10) - - -

e0) [(1-q)A=g*)Q—¢°) - ]2
H(%) B Zwsinx(l_2q2cos2x—|—q4)(1—2q4c052x—|—q8)(1—2q6cos2x+q12)-"
e0) [(A-q) =)L —¢°)---]?

into series:

= A —2A"cos2x +2A" cosdx —2A" cosb6x +2AY cos8x — - - -

©)
—~
o
S—

7T

©(0)

We obtain the determination of A, A’, A”, A" ...; B/, B”, B", BY,... by
means of equations (7.) — (10.) of the preceding § which having put U = 2%

T 7
—nK’

g = e K go over into the following:

(%)

Ay
/N
5
=
N—

= 2¥/q[B'sinx — 2B" sin3x + 2B" sin5x — 2B sin7x + - - - .

I
[N
=
©)
I~
®
I
=
+
N
o
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For this aim, we exhibit the propounded expansions this way:

2K
@(%) :A_A/eZz‘x +A//e4ix _A///€6z‘x +AIV68ix
©(0)
_A/e—Zix+A//e—4z‘x _A///€—6ix+AIVe—8ix .
; 2K
ZH®(<O7_§‘) _ {*/E[B’eix _ B/pBix + B/ Pix  _ BIV,7ix +.. ]

o W[Ble—ix _ B//e—Six + B///675ix _ BIVef7ix 4. ]

Having changed x to x — iInq e"* goes over into g"e™*, e~ ™* goes over into
e;#; further, ® (ZK%), H (%) go over into © (% —I—ZiK’), H (ZK% —|—2iK/).
Hence we obtain:

B © (28 +2iK)
o) 1 T e

— 13 _Aquix +A/q3e4ix _A//q5€6ix +A///q768ix _

A i A Y AIV i AV o
_ . + 2 e x_ 2, zx_*_ie 8ix
7 7 q q’
iH (%) g iH (23 +2iK’)
©(0 ©(0)

_ W{Bleix _ B/q263ix 4 B//q465ix _ B///q667z‘x 4. }
B" . B ) BV . BY .
_W{qze—zx_q4€—31x_|_qée—51x_qge—7zx +}

Having compared those to the propounded expressions we find:

A = AC], A = A 3, Al — A" 5, AIV — A" 7,. .
B// — B/ 2’ B/// — B// 4’ BIV — B/// 6, BV — BIV 8’. .
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and hence:

Al = Aqg, A" = Agqt, A"AP, AV = Aq'S,...,
B// — B/ 2/ B/// — B/q(’, BIVB’qlz, BV — B/ 20/' .

whence the expansions in question become:

O (%K

®(((7)T)) :A[l_choszx+2q4COS4x_2q9COS6x+2q16C058x_,,_]
B = 2/qB'[sinx — g*sin3x + ¢*3sin5x — > *sin 7x + g*°sin9x — - - -]
o) V1 q q q q

= B'[2{/gsinx — 2¢/¢° sin3x + 21/ g% sin5x — 2/ q¥ sin7x + - - - ].

The found expansions could have been derived from each other by means of

the formula:
2Kx . 2Kx
H| —— | = ¥ge™ = 4 iK').
1 < p= > vqe @< p= +1 >

For, having found the series:

— A[l . q(eZix + efZix) + q4(e4ix +€f4ix) o q9(e6ix _’_8761'36) 4. ‘]/

by changing x to x — iln /g having done which ¢?"*, ¢=2™* go over into
gmeimx, e_;#, © (%) into © (2X* +iK’), and by multiplying by {/ge’™ we
obtain:

) 0 (5 iK)
©(0) ©(0)

— A[W(eix _ e—ix) _ 4 q9(€3ix _ e—3ix) + 4/1725(651‘3( _ e—51’x) . ]

or:

H ()
= A[2¥gsinx — 24/q%sin3x + 2¢{/g?° sin5x — 2¢/g*¥sin7x + - - - |.
®00) [2¢/q i/ 9 V4 )
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Additionally, by this analysis we find:
B’ = A.

63.

The determination of A demands particular artifices. Let, as it is possible from
the preceding, us put:

(1 —2qcos2x + %) (1 — 24% cos 2x + %) (1 — 24° cos 2x + ¢'%) - - -
= P(q)[1 — 29 cos 2x + 24* cos 4x — 24° cos 6x + 27" cos 8x — - - -]
sin x(1 — 2¢° c052x+q )(1 —2g* cos 2x + %) (1 — 2¢° cos 2x + g'2) - --
P(q)[sinx — g'%sin3x 4 ¢*3 sin5x — g**sin7x + g*°sin9x — - - - |;
it is:

_ P(q)
ATt -pa—p) 7

The second expression remains unchanged, if it is multiplied by the first and
after that it is put ¢* instead of g. Hence we obtain the identity:

P(q*)P(q%)[sinx — g*sin3x + g2 sin5x — ¢** sin7x + - - -]
x[1 — 2g% cos 2x + 24° cos 4x — 2¢"® cos 6x + - - -]
= P(q)[sinx — g*sin3x + g®sin5x — ¢'?sin7x + - - -].

Now, let us do the multiplication explicitly, such that one writes sin(m + n)x +
sin(m — n)x instead of 2 sin mx cos nx everywhere: It is easily seen that the
coefficients of sin x in the expanded product will be:

14+ +q2 g0+,

such that this equation results:

P(q)
P(q%)P(q?)

But from the second of the propounded formulas having put x = 7 we find:

I
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[(1+¢) A+ A +4%) P =P@)1+4*+4°+ % + 4+ -],

whence:

PP [(T+a)(1+4")(1+4¢%) -]

or:

Hence it finally results:

1 1
(T=) (1 —g")(1—¢% - [0~ qﬂ P)1=g°) -
ﬂ+qﬂl+qﬂl X1+¢)
A== g)A-g)(1—q") -

or from those expansions we found in § 36:

A=

2k'K
o

That quantity we left undetermined up to this point we now want to put ®(0):

0 - L_ [K
A T
it is found:
2Kx 4 9 16
(1.) ® — =1—2gcos2x + 24" cos4x — 2q° cos 6x +24°cos8x — - - -,
Kxy _ - 4/ 29 6 4/ 205 g 4/ 249 g
(2.) H<7_[>—2\4/§s1nx—2 g°sin3x + 24/ q?® sin5x — 24/q¥sin7x 4 - - -
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64.

It is convenient to investigate the identity we proved in the last paragraph:

(1 —2gcos2x + %) (1 — 2¢° cos 3x + 4°) (1 — 24° cos 2x + ¢'7) - - -
~ 1—2gcos2x + 2q* cos 4x — 24° cos 6x + 24'® cos 8x — - - -
(1= =) (1 —¢°) 1 —7%) -
in another way completely different from the preceding. For this aim, we
want to mention the following two formulas as lemmas:

(1.) (1+4g2)1+¢°2) 1 +¢°2)(1+47) - --
-1 9z 7'z 7°z3 g6z
=1+ 1= 7 - (1-¢%)(1—-4q% * (1—¢2)(1—g*)(1—¢q°) * A-—PD0-gH1-g5(1—7)
1
(2.) (1—g2)(1 — 22)(1 — °2) (1 — ¢%z) - - -
= 7 . _= q* . z2
- I—q T-qz  A-q0-7) 1-¢)1-¢2)
7 z3

=91 =g)1-¢°) (1-q2)1-4*2)(1~7¢)
For the demonstration of the first I observe that the expression:

1+q2)(1+¢°2) A+ 72)(1+4"2) -,

having put ¢°z instead of z and having multiplied by (1 + gz) remains un-
changed; hence having put:

(1+g2)1+¢°2)1+q°2) - =1+ Az+ A2+ A" + ...,
it is found:
1+ Az+ A2+ A"+ = (1+q2) (1 + A’z + A"q'2 + A2 + )

and hence having done the expansion:

A/ — q + quI, AI/ _ q3A/ +q4A1/’ A/I/ — q5A// + q6A/I/’ .

or:

206



A/ — q A/I — qu, A/// — qSA”
1 _ ql 1 _ q4l 1 _ qé/ 7
whence it is:
A/ — q A// — q4 A/// — q9 -
I (1-¢)(1—q%’ (T—g*)(1—g*)(1—9°

as it is propounded.

For the demonstration of formula (2.) I observe that the expression:

1
(1-g2)(1 - g?2)(1 — g°2)(1 — g*z) - -/
having put gz instead of z and multiplied by 1%% remains unchanged; whence
having put:

1
(1-92)(1-4¢°2)(1 —g32)(1 — q*2) - -
A’Z A//ZZ A///Z3
=1+ + + +-e,
1—gz (1-4g2)(1—-¢%2) (1-42)(1-4%2)(1-¢%)
we obtain:
A/Z A//ZZ A///ZB
1+ + + SR
1—gz (1-9z)(1—-¢%2) (1-492)(1-4%2)(1—-¢°2)
1 A/qz A//qZZZ A///q3z3
= + o T 2 cavan 2 3 iy T
1—gqz (1-qz)(1—¢%2)) (1-q2)(1—¢*2)(1—¢°2) (1—4q2)(1—q%2)(1—-4%2)(1 —g%z)
!/ 3 Al 2 A2 5aN 3 A\ 53
g latAgz (A AT (AT ATz L

1—gz (1-gq2)(1—¢%2)  (1-42)(1-4%2)(1—¢%)
Hence it follows:

A/ — q + A/q, A// — q3A/ + qZA//; A/// — qSA// + q?)Al/// .

and hence:

whence:
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A/ — q A// _ q4 A/l/ _ q9

1-¢ 7~ (1-q(-¢) 1-9(1-g)1-¢)

as it was propounded.

Now, let us form the product:

{(1+qz)(1+q32)(1+q52)”‘}{<1+ q) (1+ qs) <1+‘7ZS)}

z 4

_ 9, q' 2 g’ B

‘{”1—q Tiepa-e Ta-pa-ma-e- }
g 1 gt 1 q’ 1

><{”1—qz+<1—q2><1—q4>z2+<1—c72><1—q4><1—q6>z3+ }

We find the following value for the coefficient of z" or even % which we want
to put B("):

nn
Bn) — q
(1-¢g*)(1—¢g%---(1—g*)

2 2n 8 4n

/| q ) q
1+ 1—g2 1— g2 + I—@2)1— g (1— g2 2)(1 — g2 +h)

X 18 6n
. i | q L

(1-g)1—g")(1—¢°) (1—g*2)(1—g?"H)(1 - g2"+o)

But from formula (2.) having put 42 instead of g and z = ¢*" which is seen in
the braces we find:

1
(1 — g2n+2) (1 — g2 +4) (1 — g21+6) (1 — g2n+8) .../

whence it is:

nn

B — q
(I-g)(1—gH(1—9%)(1—4g®)---

and hence:
{(1+qz>(1+q3z><1+q5q>-"}{(”q) (1+q3> (“qj)}

z z
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gD+ (E+ B AP )+
(1= =) (1 =¢°) A =7%) -
and changed g to —q it is:

or having put z = ¢*
(1 —2gcos2x +g*)(1 — 24 cos 2x + g°)(1 — 2¢° cos 2x + ¢'%) - - -

~ 1—2gcos2x + 2q* cos 4x — 24° cos 6x + - - -
1= =g)(1 =) (1 =¢%)---

What was to be demonstrated.

If one puts —qz? instead of z and multiplies by {/7z, this equation results:

vi(z- ) {a-ena-ga-¢2 - H(1-5) (1-5) (1-%) -

W=DV E-F) VP E )
1-g)1—g")(1—g°)(1—¢5)---

or having put z = e'*:

2¢/qsinx(1 — 2¢% cos 2x + q*)(1 — 24* cos 2x + ¢°) (1 — 2% cos 2x + ¢*?) - - -

_ 2¢gsinx —23/¢° sin3x 4 23/45 sin5x — 23/gP sin7x + - - -
(=) =) (1 =)A= 7% -

which is the other expansion we found.

65.

The expansions of the functions:

2K
(1.) C) <nx> =1—2gcos2x + 24* cos 4x — 2¢° cos 6x +2q'® cos 8x — - - -

2K
(2) H <7Tx> =2y¥gsinx — i‘/qjsirﬁx +24/¢® sinbx — /q¥sin7x + - - -

immediately lead to a new expansion of elliptic functions. For, from formulas
(1.) by putting u = 2X* we obtain:

7T
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Vi o (%)
/ 2K us
coram 2K _ [ (1+9)
ko o)
2K s
Aam 2% :\/]?_@(n(;ci_Z))’
® (%)

whence:

3 . 2Kx 1 2y/gsinx —23/q°sin3x +2/¢gP sin5x — 23/¢¥sin7x + - - -
(3) sin=r " Vk 1—2gcos2x +2q* cos 4x — 2% cos 6x + 2416 cos 8x — - - -

(@) 2Kx [k 2ygcosx+24/q’ cosBx +2+4/q% cos5x +2+/q* cos 7x + - - -
' 7 Vk  1—2gcos2x+ 2q*cos4x —2q° cos 6x + 2q16 cos 8x — - - -

(5) Aam KX _ ] + 2g cos 2x + 2g* cos 4x + 24° cos 6x + 29® cos 8x + - - g
1 —2gcos2x + 2g* cos 4x — 24° cos 6x + 210 cos 8x — - - -

Further, from (2.), (3.) of § 61, because it was put ©(0) = /2K we obtain:

7T 7

@(K):ﬁ, H(K):\/%, @(O)ZW, H(0) = 2k7kT’I<,

whence from (1.), (2.) it follows:

(6.) \/% =142+ 2¢* +2¢° +29" + 247 + - -
[2kK
) i _ 924 4/09 1 0 4)05 L 0af 49 | naf81 L
(7.) - 2ﬁ+2\/;+ V97 +24/97 +24/9° +
2k'K!

= =1-29+2¢*—2¢° +24"% — 242 + - ..

3
9. ke () =204 — 64/ 104/ —14¢/q9 18¢/g8 .,
- q-64/4 q q q

whence it also is:
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10) vE = 2\f+1\ﬁ+2\/75+2\/@+2\ﬁ+
1429+ 29* +24° + 290 + -
(11) \/?:1—2114—2[1 —2¢° —|—2q16—2q25+---.
14+2q+2¢* +29° + 2410+ 2425 + - -

Further, because Z(u) = g((;')) and I1(u,a) = uZ(a) + 1 1n E ; it is:

(12) 2K Z(ZKx>: 4qsin2x — 8¢ sin 4x + 12¢° sin 6x — 164'°sin 8x + - - -
Yoom T 1 —2gcos2x + 2g* cos 4x — 2g° cos 6x + 216 cos 8x — - - -
(13) H(ZK’C,ZKA>
' n
_ 2Kx Z(ZKA)+11n1—2qC052(x—A)+2q4cos4(x—A)—2q9cos6(x—A)—|—...
T 2 1-2gcos2(x+ A)+2q*cos4d(x+ A) —2¢° cos6(x + A) + - -+

This is the third expansion of elliptic functions.

66.

From the found expansions:

(1) [(1-¢)(1—gH(1—g°%)---1(1 —2qcos2x+¢*)(1—24° cos 2x +q°) (1 — 24° cos 2x +¢'0) - - -
=1 —2qcos 2x + 24* cos 4x — 24° cos 6x + 24" cos 8x —

[(1—g*)(1—g*)(1—¢° ---]sinx(1—24°cos2x +g*) (1 —2g* cos 2x + %) (1 — 24° cos 2x +¢'?) - - -
= sinx — ¢° sin 3x + ¢®sin5x — g% sin 7x + g0 sin9x — - - -,

the second of which having put /7 instead of g can also be exhibited as this:

2) [(1—-9)1—¢g*(1—g)---]sin(1 —2qcos2x +g%)(1 —2q% cos 2x 4 4*) (1 — 24° cos 2x +¢°) - - -
= sinx — gsin3x + ¢° sin5x — g°sin 7x + 4% sin9x — g sin 11x + - - -,

having put x = 0, x = 7 it follows:

(1—q)1— @)1 — )1
C)  Erpar@arearm . - larat ot
(1-g)1-q)(1-¢°1—4¢°--- _ 3., .64 10, 15
S G G Y ey Y ey S A Bt B A
(5) [1-q(1- 2)(1—173)(1—674)'--]3=1—3q+5q3—7v/6+9£/1°—
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Let us in (2.) put x = %, it is sinx = + , sin3x = 0, sinbx = —\/g,

sin7x = —I—\/;, etc.; further, (1 —¢q)(1 —2gcos3x +¢?) = 1 — g%, whence (2.)
goes over into this formula:

1-g)1-¢)1-g)1—g"%) - =1—-¢°—¢°+¢4° +¢* —¢%°

or:

6) A-9-)A-)A-q) =1-g-+q+q —q°—,
the general term of which series is:

3nntn

(=1 =

Having compared (5.) and (6.) to each other we obtain:

7) D—q-¢+¢+q —q% =P =1-37+5¢° - 7¢° +94"° —

Formula (4.) was also found by Gauss in the paper: Summatio serierum quarun-
dam singularium. Comm. Gott. Vol. I. a. 1808-1811. He deduced it from the
following memorable formula:

(8) (1-q2)(A-g2)(1 - g°2)(1 - q"z) ---
1= -@)A—g)(1—¢7)-
g1-z)  ¢£A-2)(1-g2)  ¢°(1=2)(1—g2)(1 - gz)
l—q  (A=-90-¢)  (1-9)0-¢)1-¢)
having put z = g. To these one can add other similar formulas whose proof I
omit here:

=1+ + ..

(9) 1(1+Z)(1+q2)(1+q2) 1(1-2)(1-gq2)(1—¢°2) -
' (1+q)(1+q)(1+q) 2 (1+q)(1+g>)(1+4%) -
4 q(1—2)+q4(1—z J1—2) ¢(1—-2°)(1—¢°2*)(1 —¢'2%) - -
1—¢? (1-¢*)(1- ) (1—g*)(1—g%)(1—¢q°)
o) A0+90+g)0+gz) - g (1-2)1-g2)(1-g2)
' 22 A+9)1+AHA+a) - 2z A+q9A+¢)1+4%) -
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R e T s (U s S L L (OB U o P
R - (1-¢*)(1—q% (1=¢*)(1—g)(1—g°%)

of which (9.) having put z = g yields:

1-9(1-g)1-¢")--
A+q)(A+¢)(1+4%) -

+

:1—q+q4_q9+...

N =
N =

or:

(1-q9(1->)1-g)A—g*--
1+9)(1+¢) (14431 +4*) -

which is formula (3.).

C=1-2q+2q" —2¢"+ -+,

Formula (6.) which is very deep and the one depending on the trisection of
elliptic functions was already found by Euler a long time ago and proved
lucidly. This extraordinary proof is to be treated on another occasion in more
detail.

To these we add the following expansions:

kk’(%)3 2 4 6 8y...12
(11) ) _ 240 —q)(A-q)A-g°) A7) -]
’ @<2k7x> (1 —2gcos2x +g2)(1 —2¢° cos 2x + g°) (1 — 2¢° cos 2x + g10) - - -
7T
_ A0 -g) 29P0-q) . 2YqB0-4")
~ 1-2gcos2x+4g2 1—2¢3cos2x+4° 1—2g°cos2x +¢10
ki (2
(12) *) _ [(1-g*)(-g)(A g0 —g% -]

H (Zk ) ~ sinx(1 — 242 cos2x + %) (1 — 2g% cos 2x + ¢8) (1 — 246 cos 2x + ¢12) - - -

1 44°(1+¢°)sinx 49°(1+¢%)sinx  49"(1+4°)sinx

T osinx  1-2¢%cos2x+q* | 1—2g%cos2x+ 45 1— 246cos2x + g2

1 [ 0-)0-¢) 0-gH1-¢%  ¢°1-¢°(1-7g")
sinx | 1—2g2cos2x +4g* 1—2g%cos2x+4% 1—2g°cos2x + g12

which are easily obtained from the known theory of composite fractions into
simple ones.

Hence one deduces the special expansions:
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2kK 144> 5 (1+4° s (144"
(13.) ﬂ_4\/§(1_q2)—4\/; o) 4V (10w -

2k'K 4 4q° 44° g4'o

14. =1 - —
(14) 1+q 144> 144 1+¢

. . . / . .
Having compared these expansions of the expressions 2]‘7K, %TK exhibited
above these equations result:

VI VTV VT (1 +q 1+q10 -
1—q 1-—¢8 +1—q5 1—¢7 =V 1—¢% \/; 1-— Vi
4 47 4 49 4 | 49 4q 41110
1— — . =1= — — ...
1—|—q+1+q3 1—|—q5+1+q7 1+q+1+q2 1+q3+1+q4

In like manner, Clausen recently observed that the series:

2 3 4
7 . 1 q 9

=g 1-@ 1-¢ '1-¢

can be transformed into:
T4q\ | o (148, o140\ | (140", .
q<1—q>+q (1—q2 i 1—¢q? o 1—q* "
2kK

Above we found the expansions of %, == and their second, third, fourth
powers into series. Therefore, these yield expansions of the second, fourths,
sixth and eighth powers of the expressions:

/2K
= =1+27+29* +2¢° + 29" +-.

ZkK 2\[+2\f+2\/7+2 q* 4+

whence various arithmetical theorems follow. So, for the sake of an example,
from the formula:
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2K 2_ 4 9 16 4

(n) —{1+2q+2q +29° +2q +}
_ q 2¢7 3¢° 4t
_1+8{1_q+1+q2+1_q3+1+q4+
= 1+8Y q(p) {q" +30% +3¢% + 3¢ + - },

where ¢(p) is an arbitrary odd number, ¢(p) is the sum of factors of p, the
famous Fermat-Theorem follows as a corollary, namely, that any number is
the sum of four squares.
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